首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
D. J. Pearson 《Ibis》1981,123(2):158-182
Some 5700 Ruffs were ringed in the southern Kenyan rift valley during 1967–79, mainly at Lakes Nakuru and Magadi. These have produced 15 recoveries outside East Africa, 14 in Siberia between 73° and 154°E and one in India. Adult males returned to Kenya mainly during August, and females during late August and early September. Females greatly outnumbered males at all times. Most wintering males departed late in March and early in April, but females not until about a month later. First-year birds appeared from the end of August, but remained in low numbers until late October or November. Most departed during April and May, but a few females oversummered. First-year birds typically accounted for about 25% of the wintering Nakuru females, but about 50% of those at Magadi. At both sites they accounted for a higher proportion of male birds than females. Most of the birds at Nakuru throughout late August to May appeared to be local winterers, and many individuals remained in the area for many months each year. Retrapping indicated that approximately 60% of each season's birds returned the following season. Adult males and most adult females commenced pre-winter wing moult before arrival, but completed most of it in Kenya. Males moulted 3–4 weeks ahead of females, and most had finished before December. Females typically finished during December and early January. Most second year birds timed their pre-winter moult similarly to older adults. Suspension was recorded in over 15% of all moulting birds examined. Adult pre-summer moult involved most or all of the tertials, some or all of the tail feathers, most of the inner wing coverts and the body and head plumage. It occurred mainly during January to March (males) or February to April (females), although tertial renewal commonly began a month earlier. Males showed no sign in Kenya of the supplementary prenuptial moult. First-year birds moulted from juvenile into first winter body plumage during late September to November. They underwent a pre-summer moult similar in extent and timing to that of adults, and again about a month earlier in males than females. Spring feathers acquired were often as brightly coloured as those of adults. About 15% of first-year birds renewed their outer 2–4 pairs of large primaries during January to April. Adult and first-year birds fattened before spring departure, commonly reaching weights 30–60% above winter mean. Weights of adult males peaked early in April, those of adult females early in May, and those of first-winter females later in May. Weights were relatively high also during August and September. This was due to the arrival of wintering birds carrying ‘spare’ reserves, and also apparently to the presence of a late moulting fattening passage contingent. The wing length of newly moulted adults was about 3 mm longer than that of newly arrived first-year birds, but there was no evidence of an increase in the wing kngth of adults with successive moults. Adult wing length decreased by 4–5 mm between the completion of one moult and the middle stages of the next. The migrations and annual timetable of Kenyan wintering Ruffs are discussed, and their moult strategy is compared with that of other Holarctic waders.  相似文献   

2.
Palaearctic waders were caught and weighed at Lake Nakuru in the Kenyan rift valley on 22 occasions in the non-breeding season between March 1967 and May 1969. The weights of four species are presented:Curlew Sandpiper, Little Stint, Ruff and Marsh Sandpiper.
Winter weights were relatively low and varied little. It is thought that waders had very little fat reserve at this time.
The mean weights of early autumn samples tended to be higher than corresponding mean winter weights, and autumn populations included some markedly heavy birds.
An increase in the mean weight, and a dramatic rise in the maximum weights of each species occurred shortly before its main spring departure time. The great majority of waders apparently gained considerable weight before migration from the area in April and May.
The spring migration of waders from Kenya is briefly discussed.  相似文献   

3.
D. J. Pearson 《Ibis》1971,113(2):173-185
Between March 1966 and May 1968 Palaearctic passerines were mist-netted in thick bush and lightly wooded savannah habitats near Kampala, on the northern shore of Lake Victoria. This paper reports weights of the seven principal species involved. Most migrants appeared to be in a lean condition during the winter months, when weights were relatively low and varied little in each species. Birds were not particularly light on arrival. In fact, autumn Garden Warblers Sylvia borin and Willow Warblers Phylloscopus trochilus were sometimes markedly heavy, and for the former species there was some evidence that the individuals concerned were passage migrants. Autumn weights of Swallows Hirundo rustica, Reed Warblers Acrocephalus scirpaceus and Yellow Wagtails Motacilla flava were similar to those recorded in winter. The mean weight of all species rose during late March or early April. Although most Garden Warblers and Willow Warblers trapped at the time of spring migration were within the normal winter weight range, many Acrocephalus warblers and the majority of Sand Martins Riparia riparia and Yellow Wagtails were rather heavy. Spring weights 40% or more above mean winter weight were not uncommon in the Sedge Warbler Acrocephalus schoenobaenus, but were recorded only occasionally in other species. Although most passerine migrants evidently left Kampala with substantial fat reserves, it was concluded that a considerable number of warblers departed at rather low weight. High spring weights were mainly confined to a period of two or three weeks in each of the warbler species. Locally wintering Acrocephalus warblers must have attained full premigratory weights within three weeks, and a number of spring retraps showed substantial gains at minimum mean rates of between 0–1 and 0–35 g per day. Most heavy Garden Warblers were probably on passage. Significant correlations between weight and wing-length were obtained for all species investigated, regressions of weight on wing-length being in the range 011-0-25 g/mm. Spring weights are briefly compared with data from Nigeria, and the northward migration of passerines from Lake Victoria is discussed.  相似文献   

4.
Anthony D .  Fox  Christian M .  Glahder  Alyn J .  Walsh 《Oikos》2003,103(2):415-425
Greenland white‐fronted geese accumulate body mass throughout late winter in preparation for migration after mid‐April to spring staging areas in Iceland. This analysis presents field assessment of abdominal fat deposits (API) from large samples of marked birds which showed increasing rates of fuel deposition throughout January–April. Historical records show that geese rarely depart en masse before 17 April, a pattern followed by all but one of the tagged birds. Timed positions obtained from 12 geese fitted with satellite transmitters in 1997, 1998 and 1999 suggested that all geese departed winter quarters on tailwinds between 16 and 19 April. Tracked geese flew directly to staging areas in Iceland, although one staged for 10 days in Northern Ireland in 1997 and another may have stopped briefly in western Scotland. Average migration duration of all tagged birds departing Ireland (including the 1997 bird that stopped over within Ireland) was 25 hours (range 13–77). Four geese apparently overshot and returned to Iceland during strong E to ESE winds. APIs in Iceland showed more rapid and linear increases in stores during the mean 19‐day (range 13–22) staging period there than on the winter quarters. Geese continued their migration to Greenland when APIs attained or exceeded levels at departure from Ireland and all departed on assisting tailwinds between 1 and 11 May. Tracked birds continued the journey to West Greenland in between 24 and 261 (mean 82) hours, although one bird turned back during the traverse of the Greenland Ice Cap and summered on the east coast. Seven of the birds staged for 1–20 hours at, or near, the East Greenland coast and several made slow progress crossing the inland ice, all in the direction of their ultimate destination (i.e. not necessarily taking the lowest or shortest crossing routes). It is suggested that the energy‐savings of departing on tailwinds may favour geese to wait for such conditions once threshold fat storage levels have been reached, but more research is needed to confirm this.  相似文献   

5.
The coastline of the Gulf of Mexico in the United States is an important wintering and stopover region for migratory shorebirds. The Deepwater Horizon oil spill (April–August 2010) impacted more than 1700 km of this coastline and could potentially affect shorebirds through long‐term exposure to toxins, degraded habitats, and altered food chains. We investigated the exposure to Deepwater Horizon oil of seven species of shorebirds that winter or stopover along the northern Gulf of Mexico. From October 2010 to May 2012, we captured and banded 691 shorebirds at six sites that experienced varying levels of oil contamination. Of birds sampled, 22 were lightly oiled, with species that forage on the coast having higher rates of oiling than those that forage in more estuarine habitats. Although only 8.6% of birds captured from October 2010 to May 2011 and 0.6% of the birds captured from August 2011 to June 2012 showed signs of oiling, an unknown, but potentially larger, number of shorebirds were likely exposed to indirect effects of the spill, such as decreased foraging time due to oiling of sites or disturbance from cleanup activities. Fuel stores and fattening rates of Dunlins (Calidris alpina) during spring migration, as measured using plasma metabolites, were not influenced by site oiling level. However, the level of disturbance at study sites was a significant predictor of both fuel stores and glycerol levels, suggesting that Dunlins stopping over during spring migration may have had difficulty reaching necessary fuel stores in spring 2011 due to disturbance from cleanup activity on oiled beaches. These effects from disturbance were only observed at sites with high cleanup activity, suggesting that the impact of oil‐spill cleanup on shorebirds may be minimized by limiting cleanup activities to specific areas and times of day.  相似文献   

6.
The Garden Warbler is a classic subject for the study of Palaearctic–African bird migration strategies. Most studies have considered the situation close to the breeding areas, while the African and especially the sub‐Saharan part of the species’ migration have received comparatively little attention. Here we use autumn and spring ringing data from Nigeria and The Gambia to study the movements and energetics of the species in West Africa during the non‐breeding season. The first Garden Warblers arrive south of the desert around the beginning of September, roughly at the same time as the median date for their passage through the Baltic Sea region and c. 3 weeks before their median passage date through southern Italy. In the Nigerian Sahel savannahs, where, owing to the rainy season and its associated increase in food availability, many more Garden Warblers stop over in autumn than in the dry spring, the median date of passage is 1 October. The body mass on arrival south of the desert is normally only a few grams more than the lean body mass (LBM; 15 g) – with a mean of 16.6 g (sd = ±1.8 g) in The Gambia and 17.4 g (sd = ±1.8 g) in the Nigerian Sahel. After resting and refuelling in the Sahel, Sudan and Guinea‐type savannahs the Garden Warblers depart during November–December for wintering areas further south. Before leaving, they again increase their body mass, with an average fuel load of c. 20%, and often more than 50% relative to LBM. Some of the birds passing through Nigeria probably spend midwinter around the Congo Basin. During spring they return northwards to the Guinea savannah zone in April and fuel‐up there for the trans‐Sahara passage. At this time they normally increase their body reserves to around 50% of the LBM, but c. 10% of the birds gain 100%, thus doubling their mass. The passage there peaks around 20 April and continues well into May. That the main take‐off northwards is directly from the Guinea savannahs is indicated by the very low numbers trapped in the Sahel during spring.  相似文献   

7.
Afro‐Palaearctic migrants are declining to a greater degree than other European species, suggesting that processes occurring in Africa or on migration may be driving these trends. Constraints on food availability on the wintering grounds may contribute to these declines but little is known about when and where these resource constraints may occur. Sufficient resources are particularly important prior to spring migration, when migrants must cross the Sahara Desert. We examined mass gain and departure phenology in a long‐distance Palaearctic passerine migrant to determine the degree to which pre‐migratory fattening occurs in their long‐term non‐breeding territories in the Guinea Savannah region of Africa. We monitored 75 Whinchats Saxicola rubetra for departure from their non‐breeding territories in one spring, and analysed mass data of 377 Whinchats collected over three non‐breeding seasons plus 141 migrating Whinchats caught in April over 8 years, all within the same few square kilometres of human‐modified Guinea Savannah in central Nigeria. Whinchats left their winter territories throughout April, with males departing on average 8 days earlier than females. However, there was no evidence that time of departure from territory was linked to age, body size or mass at capture. Whinchats departed their territories with a predicted mass of 16.8 ± 0.3 g, considerably less than the c. 24 g required for the average Whinchat to cross the Sahara directly. Comparing departure dates with arrival dates in southern Europe showed a discrepancy of at least 2 weeks, suggesting that many Whinchats spend considerable time on pre‐migratory fuelling outside their winter territory prior to crossing the Sahara. Overwintering birds gained mass slowly during February and March (0.03 g/day), and non‐territorial or migrating birds at a much higher rate in April (at least 0.23 g/day), with up to 20% of migrating Whinchats in April potentially having sufficient fuel loads to cross the Sahara directly from central Nigeria. Our results suggest that most Whinchats leave their winter territories to fatten up locally or, possibly, by staging further north, closer to the southern limit of the Sahara. Resource constraints are therefore likely to be particularly focused in West Africa during mid‐April and possibly at staging areas before the crossing of the Sahara Desert.  相似文献   

8.
Wanink, J.H. & Goudswaard, K. 2000. The impact of Lake Victoria's lakefly abundance on Palearctic passerines. Ostrich 71 (1 & 2): 194–197.

In spite of an increase in lakeflies emerging from Lake Victoria, these periodically swarming insects remained an erratic food source for birds. However, even the relatively poor south-eastern shores were exploited by some Palearctic warblers on spring passage. Numbers and weights of Willow and Garden Warbler were correlated with lakefly abundance. The occurrence of lakefly swarms may trigger the birds' departure to the breeding areas, as the superabundance of food allows for rapid premigratory fattening.  相似文献   

9.
Waterfowl and other migratory birds commonly store nutrients at traditional staging areas during spring for later use during migration and reproduction. We investigated nutrient-storage dynamics in the midcontinent population of greater white-fronted geese (Anser albifrons; hereafter white-fronted geese) at spring staging sites in the Rainwater Basin of Nebraska during February–April and in southern Saskatchewan during April–May, 1998 and 1999. In Nebraska, lipid content of white-fronted geese did not increase, and protein content changed little over time for most age and sex categories. In Saskatchewan, lipids increased 11.4 g/day (SE = 1.7) and protein content increased 1.6 g/day (SE = 0.6) in the sample of adult geese collected over a 3-week period. A study conducted during 1979–1980 in the Rainwater Basin reported that white-fronted geese gained 8.8–17.7 g of lipids per day during spring, differing greatly from our results 2 decades later. In addition, lipid levels were less in the 1990s compared to spring 1980 for adult geese nearing departure from staging sites in Saskatchewan. This shift in where geese acquired nutrient stores from Nebraska to more northern staging sites coincided with a decrease in availability of waste corn in Nebraska, their primary food source while staging at that stopover site, and an increase in cultivation of high-energy pulse crops in Saskatchewan. White-fronted geese exhibited flexibility in nutrient dynamics during spring migration, likely in response to landscape-level variation in food availability caused by changes in agricultural trends and practices. Maintaining a wide distribution of wetlands in the Great Plains may allow spring-staging waterfowl to disperse across the region and facilitate access to high-energy foods over a larger cropland base. © 2011 The Wildlife Society.  相似文献   

10.
Migratory birds wintering in Africa face the challenge of passing the Sahara desert with few opportunities to forage. During spring migration birds thus arrive in the Mediterranean area with very low energy reserves after crossing the desert. Since early arrival to the breeding grounds often is of importance to maximize reproductive success, finding stopover sites with good refuelling possibilities after the Saharan passage is of utmost importance. Here we report on extensive fuelling in the great reed warbler Acrocephalus arundinaceus on the south coast of Crete in spring, the first land that they encounter after crossing the Sahara desert and the Mediterranean Sea in this area. Birds were studied at a river mouth and due to an exceptional high recapture rate (45 and 51% in two successive years), we were able to get information about stopover behaviour in 56 individual great reed warblers during two spring seasons. The large proportion of trapped great reed warbler compared to other species and the large number of recaptures suggest that great reed warblers actively choose this area for stopover. They stayed on average 3–4 d, increased on average about 3.5 g in body mass and the average rate of body mass increase was 4.8% of lean body mass d–1. Wing length affected the rate of increase and indicated that females have a slower increase than males. The results found show that great reed warblers at this site regularly deposit larger fuel loads than needed for one continued flight stage. The low body mass found in great reed warblers (also in birds with high fat scores) is a strong indication that birds staging at Anapodaris still had not been able to rebuild their structural tissue after the strenuous Sahara crossing, suggesting that rebuilding structural tissue may take longer time than previously thought.  相似文献   

11.
Birds can optimize their migration either by minimizing time of transport, energy expenditure, or predation risk during migration. For each of these optimization criteria different fattening and stopover strategies are predicted. The first two of these optimization criteria are examined here for the bar-tailed godwit ( Limosa lapponica ). In the European Wadden Sea two populations of bar-tailed godwits stop over during spring migration between their wintering and breeding areas. The European population winters mainly in Great Britain and the western part of the Wadden Sea and breeds in Fennoscandia. The Afro-Siberian population winters in West Africa and breeds in Siberia. The European wintering population migrates to the eastern parts of Wadden Sea in March where it stays until early May. During this time birds gain 1.9 g d−1 in body mass for a 1500–2000-km non-stop flight to the breeding areas. Afro-Siberian birds stay only for one month in May in the Wadden Sea where they gain on average 9.4 g d−1 in mass for a 4000-km non-stop flight. Intake rates in April/May did not differ between the two populations (1.5 kJ min−1 and 1.8 kJ min−1 for Siberian and European migrants, respectively) but total energy intake was higher for the Siberian migrants, since they spend 50% of the day foraging vs 30% in the European birds. In contrast to European migrants, Afro-Siberian birds start to moult into breeding plumage already in their winter quarters. During their stopover in the Wadden Sea thermostatic costs are lower than at times when European birds are present. Thus, the higher energy demands of the Afro-Siberian birds seem to be fulfilled by a combination of physiological adaptations and a high working level. European birds seem to adopt an energy-minimized migration strategy whereas Afro-Siberian birds appear to follow a time-minimized migration.  相似文献   

12.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

13.
Effects of temperature and precipitation on spring dispersal patterns of Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) caught on yellow sticky traps were estimated in central and eastern North Carolina and eastern Virginia, USA, from 1997 to 2001, and in 2004 and 2007. Data were collected from 44 sites within 14 locations over 7 years, resulting in 30 location‐year data combinations. The following independent variables were examined to determine their relationship to the number of F. fusca caught on sticky traps during specified time intervals: cumulative degree days (base 10.5 °C) from 1 November to the start of each trapping interval (DD), number of days with temperatures favorable for flight during each trapping interval (DTFF), and an index of rainfall during specific intervals prior to and during the trapping interval (RI). Regression models that contained various combinations of these variables explained 62, 79, 74, and 68% of the variation in the number of dispersing F. fusca captured during 1–15 April, 16–30 April, 1–15 May, and 16–31 May, respectively. The results provide strong evidence that the suppressive effects of precipitation on growth of local populations developing during late winter and early spring are subsequently manifest at the landscape scale as reductions in the populations of dispersing adults that may persist for as long as 5–6 weeks after the precipitation occurs.  相似文献   

14.
Lord  Medway 《Ibis》1973,115(1):60-86
The Barn Swallow is a non-breeding winter visitor to West Malaysia (Malaya), abundant in season, by day feeding aerially over a wide range of habitats and by night normally roosting gregariously in trees, reed-beds or on service wires in towns. Records of ringed birds have demonstrated that those reaching Malaya breed in the Palaearctic region from 108°E eastwards between 37° and 51°N. Recoveries south of the breeding range suggested that migrating birds may follow either a continental route or a more easterly track through the Philippines and Borneo. Counts at roost sites in a reed-bed and in towns demonstrated a seasonal increase in numbers from late July to a peak in November, followed by a decline of about 20% to a level maintained until mid-February when departure commenced. Most birds had left by early May, but a few lingered and possibly overlapped with the first returning migrants in June. There was no evidence that any individuals remained in Malaya through the nuptial period. Repeats during winter at three regularly sampled urban roosts indicated that many birds on passage were present until November and again in late March–early April; from December to February the winter population was relatively stable and comparatively sedentary. Although the distances between towns were small in relation to the demonstrated foraging range of Barn Swallows, only 17% of 1,955 repeats of ringed birds represented a shift in roost site. Most shifts were towards the centrally situated and most populous roost of the three; interchanges between the outer pair of towns were few. A complete moult occurred on the wintering grounds, during which young of the year acquired adult plumage. Replacement of the primaries extended virtually throughout the moulting period, at an average rate of 2.4 feathers per month in the proximal part of the tract and 1.3 feathers per month in the distal part. Adults on average moulted slightly earlier than juveniles, but there was a wide scatter in timing between individuals of both age groups. There was no evidence that the initiation of moult was related to the dates of post-nuptial migration. The date of departure on prenuptial migration, however, was normally delayed until primary moult was complete. Large weight gains in March and April occurred only in swallows which had completed the moult. At this period the mean weight of birds in fresh plumage was about 30% above the lowest winter mean, and was significantly higher than that of contemporary samples of birds in which moult was continuing. In final samples in late April and early May mean weights showed a decline, indicating that late birds departed with reduced deposits of metabolic reserves. The gonads of adults of both sexes among passage and arriving birds in July and August had largely completed post-nuptial regeneration, and subsequently remained quiescent. Preliminary stages of recrudescence were observed in females from February onwards, and in males from March. Recrudescence was most advance in specimens which had completed the moult, but did not approach breeding condition in any bird before departure. Returning birds tended to be conservative in their choice of winter roost. Among 1,276 records, 82% were recaptured in the town of original ringing. Again shifts towards the centrally situated roost were more numerous than between the peripheral pair. The frequency of returns varied significantly with the month of ringing, being higher for December-March, lower for July-November and April-May. Survival rates, calculated from returns after one and two breeding seasons, indicated an annual mortality of 60–72%, higher among juveniles than adults. Comparison of results of successive years suggested that unfavourable conditions in 1967 resulted in lower survival of juveniles in particular than in 1966. There was no evidence of mortality at the roost sites, and it is argued that heavy losses probably occur during the migratory journeys.  相似文献   

15.
The pre-nesting feeding behaviour of greylag Anser anser and pink-footed geese A brachyrhynchus was studied on agricultural land at low altitude in southern Iceland from 10 April to 8 May 1990 Greylag geese were already present on 12 April increased to 4580 birds by 24 April, but declined to 1300 by 3 May Pink-footed geese arrived around 20 April and numbers continued to increase to a peak count of 11340 on 3 May Over 60% of greylag geese initially used stubble fields on the coast where this habitat was most frequent, but increasingly resorted to grassland and wetland habitats during late April Later-arriving pink-feet predominantly used managed grassland, away from coastal areas At inland grassland sites, greylag numbers peaked on 20 April, pink-feet m early May The early exploitation by greylags was associated with grass growth initiated under protective snow-patches Greylags spent 90 times more time feeding within 1 m of snow patches with enhanced grass growth than expected by chance and their feeding rates near snow patches were faster and their step rates slower than further away By early May, grass growth was uniform and, although snow-patches persisted, no difference in forage quality, goose feeding rates or step rates could be detected It is concluded that, in spring 1990 at least, habitat segregation during spring migration in southern Iceland minimised competition between these two closely related goose species within the same geographical area In areas where both species exploit the same habitat, a two week difference m timing of breeding (and hence phenology of migration) further assures minimal overlap in feeding exploitation  相似文献   

16.
Ian C. T.  Nisbet Lord  Medway 《Ibis》1972,114(4):451-494
A population of 400–600 Acrocephalus orientalis wintering in a Phragmites habitat at 3°N in West Malaysia was studied during four northern hemisphere winters, by means of systematic mist-netting. Data from other study-areas, other habitats and other winters are also used. Intensive mist-netting appears to have made birds move over longer distances than they did in the absence of disturbance, and to have led to the emigration of marked birds from the study-area. Trapping also affected feeding behaviour, resulting in weight-loss; repeated trapping may have increased mortality. Males and females could be separated by means of wing-length in fresh plumage. Females were largely confined to Phragmites; males were more numerous on the edge of reed-beds and in scrub vegetation. Males suffered greater feather-wear than females. As measured by the trapping rate, birds were uniformly distributed throughout the Phragmites habitat, at the same density in different winters. Undisturbed birds used a “home-range” of 1–4 ha, overlapping with 15–50 other individuals. Disturbed birds overlapped with 100–200 others. Individual birds returned to exactly the same “home-range” in successive winters. After correcting for the effects of disturbance and incomplete sampling, the proportion of adults ringed in one winter which returned in the next is estimated as 65% in each of two study-areas. This is a minimum estimate of the annual survival rate for adults. Mean total body-weights were at a minimum in midwinter (November-February). Fat-free weights were also lower in midwinter than in autumn and spring. Body-moult was observed in March and April. Moult of the flight-feathers takes place between July and September, on the breeding grounds or slightly to the south. Females departed on spring migration between 10 and 25 May; males some 11–14 days earlier. Adults arrived in autumn between 8 September and 7 October; males and females often came in in separate “waves”. Females were absent for only about 127 days, about the minimum required for migration, breeding and moult. Dates of migration match those of the more northern breeding populations. Spring departure is later than dates of passage recorded in south China; hence birds of this population appear to make long nights. On average, birds departing in spring carried about 9 g of fat, roughly 40% of total fat-free body-weight. This is about half the energy reserve required for the entire journey. Dates of passage in central China are consistent with a hypothesis that they make the journey (4,500-5,000 km) in two “hops”. A few birds which remained light until very late in the spring showed a significantly lower return rate in the next year. Most birds arriving in autumn appear to have carried 1–2 g of fat, but some were at or below the normal fat-free weight. Many birds appear to have lost weight soon after arrival. Returning ringed adults were amongst the very first birds trapped in September. Individual birds appear to have migrated on very similar dates in different years: many of the dates of trapping differed by 2 days or less in successive years. Trapping rates reached a peak in early October and then declined rapidly, reaching the midwinter level by 21 October. The decline coincided with the differential disappearance of juvenile birds. However, birds collected at this time had adequate fat reserves, and the disappearance appears to have preceded the period of food-shortage. It is suggested that the loss of juvenile birds resulted from behavioural interactions favouring the more dominant individuals, as has been described for several temperate zone residents. The first few weeks in the wintering area may thus be the critical period of mortality during the year. Because birds from different breeding areas are expected to be mixed in the winter-quarters, and vice versa, local mortality factors in winter may affect a number of breeding populations. High adult survival rates have been recorded in several other birds which breed in the temperate zones and winter in the tropics. In general their breeding success appears to be high, so the first-year mortality must be high. The closely related A. arundinaceus, which winters in Africa, differs from A. orientalis in size, wing-shape, timing of spring migration and timing of moult. These differences can be interpreted as adaptations to different environmental (primarily climatic) factors experienced during migration and on the breeding grounds. The segregation of males and females into different habitats probably reduces inter-sexual competition in winter, but this is not necessarily its primary function. Males collected in the evening in Phragmites had smaller fat reserves than females, suggesting that the females are better adapted to this habitat. The large size of the males is probably maintained in part by sexual selection in the breeding season. On the other hand, the size of females and their habitat is probably limited by the specialisation of their nest. These factors would suffice to explain the sexual dimorphism in size and habitat.  相似文献   

17.
The movements and behavior of many taxa of seabirds during the non‐breeding season remain poorly known. For example, although studies conducted in the Pacific and Indian oceans suggest that White‐tailed Tropicbirds (Phaethon lepturus) seldom fly more than a few thousand kilometers from nest colonies after breeding, little is known about the post‐breeding movements and behavior of a subspecies of White‐tailed Tropicbirds (P. l. catesbyi) that breeds on islands in the North Atlantic Ocean. Our objective, therefore, was to use light‐based geolocators to identify the ranges and pelagic activities of White‐tailed Tropicbirds from Bermuda during the non‐breeding periods in 2014–2015 (= 25) and 2015–2016 (= 16). Locations were estimated based on changes in light intensity across time, and pelagic activities were determined based on whether geolocators attached to leg bands were wet (i.e., birds resting on the water's surface) or dry (i.e., birds in flight). In 2014, birds spent late summer (July–September) near Bermuda and the British Virgin Islands; by mid‐September, most (= 17; 68%) birds took a direct easterly route to the Sargasso Sea. In 2015, most post‐breeders (= 15; 94%) flew east from Bermuda and to the Sargasso before the end of late summer. For both years combined, fall and winter (October–February) ranges extended as far west as North Carolina and as far east as the mid‐Atlantic Ridge. In both years, all birds were located between Bermuda and the British Virgin Islands during the spring (April–May). All birds then flew north to Bermuda in both years, with variations in timing, during April and May. We also found extensive overlap in the ranges of males and females during the non‐breeding season in both years. During the non‐breeding season, White‐tailed Tropicbirds spent 5% of night periods and 41% of day periods in flight in 2014; in 2015, birds spent 8% and 42% of night and day periods, respectively, in flight. Tropicbirds spent more time flying during the day because they hunt by day, detecting prey on the wing by sight. Overall, our results suggest that White‐tailed Tropicbirds that breed in Bermuda are diurnal, nomadic wanderers that range over an extensive area of the Atlantic Ocean during the non‐breeding season.  相似文献   

18.
Investigation of seasonal changes in the composition of nematode populations, principally Ostertagia oslertagi, was conducted over 3 years at three locations in Louisiana. This is the most commonly occurring parasite of cattle in the state. Naturally infected yearling cattle were killed monthly over extended periods and tracer calves were grazed for monthly intervals from late autumn to summer at two locations in 1978–1979. Major objectives were to determine seasonal incidence of common gastrointestinal nematodes and for O. ostertagi, in particular, the time period during which larval inhibition was prevalent, circumstances under which larvae were conditioned to inhibition, and the duration of inhibition. Small numbers of inhibited O. ostertagi were recovered between November and February. Large numbers were found initially in March and increased numbers in April and May. Both normally developing and inhibition prone larvae were acquired during late winter-early spring, with the proportion of the latter being more prevalent in April and May. Evidence from tracer calves indicated that few O. ostertagi larvae were acquired after early June. Large burdens of inhibited larvae persisted in yearling cattle through summer; numbers of developing larvae and adults were minimal. Maturation of inhibited larvae occurs from August to October and in one instance was associated with cases of clinical parasitism. Factors responsible for inhibition were not defined, but increasing temperatures of late winter-early spring, host resistance, and density-dependence of populations were considered. Other abomasal genera were most prevalent in spring while intestinal genera were most common during autumn through spring.  相似文献   

19.
Although fat often supplies the major source of metabolic fuel during winter fasts of birds, this critical life-history trait is little studied by ecologists. In the dark-eyed junco Junco hyemalis, we have in a series of studies investigated the extent of plasticity in the winter fat reserve. Earlier (Rogers et al. 1993), we reported (1) a highly variable pattern of geographic variation in the winter fat reserve of junco populations in eastern North America, (2) disappearance of statistically significant interpopulation variation after experimental displacement to a common latitude, and (3) post-displacement temporal variation in the fat reserve. In analyses reported here, recent temperature, recent snowfall (a measure of short-term predictability of resources), season (perhaps reflecting continued exposure to unpredictable resources) and daylength explained spatial variation in the fat store. Recent temperature explained temporal variation in the fat reserves of groups of displaced juncos. These results suggest that platticity in a life-history trait has evolved in an uncertain winter environment. Through environment-dependent fattening, the costs of fat can be avoided during warm periods and at locations where fat confers little benefit, whereas benefits of fat can be quickly gained if weather conditions become harsh and snowfall might restrict food. Three types of winter fatteners probably exist among birds: responders (fatten in response to the proximate environment), predictors (fatten in anticipation of long-term environmental conditions), and responder-predictors (combination of both types of regulation). Because dark-eyed juncos select different winter latitudes as they age, we hypothesize that the nonbreeding component of the life-history of juncos includes the co-adapted plastic traits of winter fattening and post-breeding migration. Life-history theory can apparently explain important traits related to fitness in the nonbreeding period.  相似文献   

20.
C. H. Fry    P. L. Britton  Jennifer F. M.  Horne 《Ibis》1974,116(1):44-51
The 165 000 km2 sub-desert corridor in which Lake Rudolf lies may affect the routes taken by Palaearctic migrants in eastern Africa. A five-week study was made at Lake Rudolf during the spring migration period. The area is important for water birds, especially waders. It is less important for land birds, although on passage several passerines occur abundantly on Central Island, and some commonly in similarly well vegetated area (Turkwel river, littoral reedbeds). Some may fatten there before emigrating. Evidently the sub-desert corridor is not so inhospitable that it is entirely avoided or overflown by migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号