首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In order to study the cognitive function rhythm related to the auditory frequency system for people who prefer to be active in the morning and at night, we conducted an experiment during morning (09:00), evening (17:00) and late-night (01:00) periods. On the basis of a morningness/eveningness questionnaire, six moderately morning-type subjects (M-types) and seven evening-type subjects (E-types) were selected. Diurnal variation of event-related potential (ERP) were assessed under low-frequency (250/500 Hz) and high-frequency (1000/2000 Hz) condition using an oddball task. M-types were tested during the morning (09:00) and evening (17:00) periods, and E-types were tested during the evening (17:00) and midnight (01:00) periods. Subjects were asked to press a button when the target stimulus was detected. We found that the P300 amplitude at 09:00 was significantly greater than that at 17:00 for M-types, was significantly greater at 17:00 than that at 01:00 for E-types. A significant difference of P300 latency and P300 amplitude was observed at 17:00 between M-types and E-types. The P300 amplitude obtained after a low-frequency stimulus was significantly greater than that after a high-frequency stimulus at 09:00 for M-types, and at 01:00 for E-types. These results revealed that stimulus frequency had effects on the diurnal changes of human cognitive function, and circadian typology had a direct effect on the diurnal change of human cognitive function. This study has extended the previous findings of auditory P300 studies on diurnal variations in terms of circadian typology and stimulus parameter.  相似文献   

2.

Objective:

Despite the extended overnight fast, paradoxically, people are typically not ravenous in the morning and breakfast is typically the smallest meal of the day. We assessed whether this paradox could be explained by an endogenous circadian influence on appetite with a morning trough, while controlling for sleep/wake and fasting/feeding effects.

Design and Methods:

Twelve healthy non‐obese adults (six males; age, 20‐42 years) were studied throughout a 13‐day laboratory protocol that balanced all behaviors, including eucaloric meals and sleep periods, evenly across the endogenous circadian cycle. Participants rated their appetite and food preferences by visual analog scales.

Results:

There was a large endogenous circadian rhythm in hunger, with the trough in the biological morning (8 AM) and peak in the biological evening (8 PM; peak‐to‐trough amplitude = 17%; P = 0.004). Similarly‐phased significant endogenous circadian rhythms were present in appetites for sweet, salty and starchy foods, fruits, meats/poultry, food overall, and for estimates of how much food participants could eat (amplitudes 14‐25%; all P < 0.05).

Conclusions:

In people who sleep at night, the intrinsic circadian evening peak in appetite may promote larger meals before the fasting period necessitated by sleep, whereas the circadian morning trough would theoretically facilitate the extended overnight fast. Furthermore, the circadian decline in hunger across the night would theoretically counteract the fasting‐induced hunger increase that could otherwise disrupt sleep.  相似文献   

3.
Time-dependent variations in the pharmacokinetics and pharmacodynamics of insulin were studied at two times, 10:30 and 20:30 during the same day in normal and streptozotocin (STZ)-induced diabetic minipigs housed in L(06:00):D(18:00) using the intravenous insulin tolerance test. Following intravenous insulin (0.1 IU/kg) administration in normal minipigs, the time for the glucose level to reach nadir (tnadir) was significantly longer in the evening than the morning [(a.m.: 30.4 (± 2.4) VS. P.M.: 38.5 (± 3.3) min] (p < 0.01), although maximum reduction of glucose level (nadir) in the morning and evening was not significantly different [a.m.: (-70 (± 2) VS. P.M.: -65 (± 5) %]. The rate of glucose decline (Kin) was significantly decreased in the evening [a.m.: 5.33 (± 0.71) VS. P.M.: 4.44 (± 0.54) %dBG/min] (p < 0.01), and the integrated glucose-lowering response (ABCB) was significantly higher in the evening than the morning [a.m.: 3.18 (± 0.38) VS. P.M.: 4.52 (± 0.30) (g/dl) * min] (p < 0.01). The area under the plasma insulin concentration curve was increased significantly in the evening [a.m.: 2.26 (± 0.174) VS. P.M.: 2.74 (± 0.18) (mU/ml) * min], while the morning plasma insulin half-life did not differ significantly from that in the evening [a.m.: 4.79 (± 0.36) VS. P.M.: 5.47 (± 0.47) min]. After induction of diabetes by intravenous STZ injections, minipigs became diabetic, baseline blood glucose was observed to increase from the range of 45–55 to 200–250 mg/dl while plasma insulin levels decreased from 7–12 to 3–5 uU/ml. In the STZ-induced diabetic minipigs, a higher dose (0.2 IU/kg) was used in the intravenous insulin tolerance test in an attempt to normalize the high glucose levels. Following intravenous  相似文献   

4.
The diurnal variation in insulin-stimulated systemic glucose and amino acid utilization was investigated in eleven pigs of approximately 40 kg. Pigs were fed isoenergetic/isoproteinic diets (366 kJ/kg BW (0.75) per meal) in two daily rations (06:00 and 18:00 h). After a 3-week habituation period, hyperinsulinemic euglycemic euaminoacidemic clamp studies (by intra-portal insulin, glucose and amino acids infusion and arterial blood sampling) were performed starting at 06:00 or 18:00 h (while skipping the meal), using a cross-over within-animal design. Basal (preclamp) plasma concentrations of insulin, glucose, lactate, individual amino acids and urea were similar in the morning compared to the evening. Insulin-stimulated ( approximately 4-fold increase over basal) systemic glucose utilization was similar (17.6+/-1.4 and 18.9+/-1.8 mg.kg (-1).min (-1)) but amino acid utilization was 19% greater in the morning VS. the evening (2.37+/-0.21 VS. 1.99+/-0.15 mg.kg (-1).min (-1), p<0.05), respectively. Insulin-stimulated plasma lactate concentrations remained constant in the morning (0.77+/-0.06 to 0.71+/-0.04 mmol.l (-1)) but declined in the evening (0.89+/-0.09 to 0.65+/-0.06 mmol.l (-1), p<0.05). By contrast, insulin-stimulated plasma urea concentrations declined in the morning (2.48+/-0.11 to 2.03+/-0.10 mmol.l (-1), p<0.005) but remained constant in the evening (2.18+/-0.14 to 2.12+/-0.12 mmol.l (-1)). In conclusion, pigs fed identical meals at 12-hour intervals follow a clear diurnal biorhythm in protein anabolism, with greater insulin-stimulated systemic amino acid utilization and lower plasma urea response in the morning compared to the evening.  相似文献   

5.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

6.
Spontaneous hormone secretory dynamics include tonic and pulsatile components and a number of periodic processes. Circadian variations are usually found for melatonin, TSH and GH, with peak secretions at night, and in cortisol secretion, which peaks in the morning. Free thyroxine (FT4) and insulin-like growth factor (IGF)1 levels do not always change with circadian rhythmicity or show only minor fluctuations. Fractional variations explore the dynamics of secretion related to time intervals, and the rate of change in serum levels represents a signal for the receptorial system and the target organ. We evaluated time-related variations and change dynamics for melatonin, cortisol, TSH, FT4, GH and IGF1 levels in blood samples obtained every 4 h for 24 h from eleven healthy males, ages 35-53 years (mean ? SE 43.6 ± 1.7). Nyctohemeral (i.e., day-night) patterns of hormone secretion levels and the fractional rate of variation between consecutive 4-hourly time-qualified hormone serum levels (calculated as percent change from time 1 to time 2) were evaluated for circadian periodicity using a 24 and 12-h cosine model. A circadian rhythm was validated for serum level changes in cortisol with peaks of the 24-h cosine model at 07:48 h, and melatonin, TSH and GH, with phases at 01:35 h, 23:32 h, and 00:00 h, respectively. A weak, but significant, 12-h periodicity was found for FT4 serum levels, with minor peaks in the morning (10:00 h) and evening (22:00 h), and for IGF1, with minor peaks in the morning (07:40 h) and evening (19:40 h). Circadian rhythmicity was found in the 4-hourly fractional variations with phases of increase or surge at 02:00 h for cortisol, 22:29 h for melatonin, 05:14 h for FT4, and 21:19 h for GH. A significant 12-h periodicity was found for the 4-hourly fractional variations of TSH with two peaks in the morning (decrease or drop at 04:42 h) and afternoon (surge at 16:28 h), whereas IGF1 fractional variation changes did not show a significant rhythmic pattern. In conclusion, the calculation of the time-qualified fractional rate of variation allows evaluation of the dynamics of secretion and the specification of the timepoint(s) of maximal change of secretion, not only for hormones whose secretion is characterized by a circadian pattern of variation, but also for hormones that show no circadian or only weak ultradian (12 h) variations (i.e., FT4).  相似文献   

7.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

8.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00-02:00 h (night shift) compared with 12:00-14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20-33 yrs, BMI 20-25kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/ 13:00 h and 07:00/19:00h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

9.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00–02:00 h (night shift) compared with 12:00–14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20–33 yrs, BMI 20–25 kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/13:00 h and 07:00/19:00 h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

10.
Alzheimer’s patients suffer from circadian dysregulation. The aim of this study was to examine the evolution of balance control and gait at different times of the day (11:00, 14:00, 18:00) in order to identify whether Alzheimer’s patients were more likely to fall at certain periods of the day. Spatio-temporal parameters of centre of foot pressure displacements were measured with a force platform and spatio-temporal parameters of walking were evaluated with a gait analysis device. The results highlighted that balance control was worse in the evening and the afternoon than in the morning. Furthermore, the walking speed was faster and support duration, swing duration and cycle duration were shorter in the evening than in the morning and afternoon. The combined analysis of balance control and gait parameters revealed that balance control and walking are concomitantly altered in the evening which increases the fall risk in the evening, in comparison with the morning, for Alzheimer’s patients.  相似文献   

11.
Emotional intelligence (EI) and morningness–eveningness (M-E) preference have been shown to influence mood states. The present article investigates the way in which these two constructs may interact, influencing morning and evening mood levels. A sample of 172 participants completed a multidimensional mood scale measuring energetic arousal (EA), tense arousal (TA), and hedonic tone at 7:00 and at 22:00. As expected, morning and evening types experienced higher EA at their preferred time of day; effects of M-E on other mood dimensions were weaker. EI was found to correlate with lower TA, but the association was stronger at 22:00, perhaps reflecting the role of EI in managing the social events characteristic for the evening hours. An interactive effect of EI and M-E was found for both diurnal changes and morning levels of EA. Namely, in individuals higher in EI, there appeared a more marked synchrony effect between chronotype and EA, which was absent in those low in EI; individuals higher in EI showed more pronounced diurnal changes in EA characteristic for their chronotype (i.e., higher EA at morning hours in morning chronotypes; higher EA at evening hours in evening chronotypes), while in participants low in EI, diurnal changes in EA were smaller. Moreover, the characteristic positive association between morningness and EA during morning hours was apparent only in those high in EI. These findings suggest that individual differences in circadian variation in mood reflect several factors, including an endogenous rhythm in energy, the distribution of social activities throughout the day, and the person’s awareness of their own energy level.  相似文献   

12.
Many studies conducted in the field of chronobiology report diurnal fluctuation in cognitive and physical performance that occurs in phase with the body temperature circadian rhythm. Waking time and whether or not breakfast is consumed are currently considered to influence the diurnal fluctuation in data collected in the morning at 06∶00 h and evening at 18∶00 h. Nineteen male subjects participated in four test sessions to examine if wake‐up time (04∶00 h or 05∶00 h) and eating or not eating breakfast influence psychomotor performance capacity at 06∶00 h. All four sessions were separated by ≥36 h and were completed in a counterbalanced order. Each test session comprised sign cancellation, Epworth Sleepiness Scale, simple reaction time, and manual dexterity tests. Most of the results indicate that psychomotor performance when evaluated at 06∶00 h under each of the four different study situations (two waking times and two breakfast conditions) is not statistically significantly different. Consequently, previous results that documented diurnal fluctuations in morning and evening performance capacities, with test sessions at 06∶00 h, are confirmed. Being less efficient in the early morning than in the afternoon potentially exposes people to elevated risk of accident and injury at this time of the day. Prior waking time and/or consumption of a light meal, plus other countermeasures mentioned in the literature, are insufficient to prevent this risk.  相似文献   

13.
Digoxin, frequently used in the treatment of congestive heart failure, has a very narrow therapeutic index. We studied the differences in digoxin pharmacokinetics when ingested in the morning versus evening. A single digoxin (0.25 mg) dose was given orally to the same group of 10 diurnally active healthy (6 male and 4 female) volunteers in the morning at 08:00 and evening at 20:00 in separate experiments scheduled 2 weeks apart. Blood samples were collected at specific times for 48h after each timed dose; digoxin was determined by radioimmunoassay (RIA). Maximum plasma concentration Cmax; Tmax, the time to reach Cmax; area under plasma concentration curve AUC; and elimination half-time T1/2 of digoxin were determined. Tmax was statistically significantly shorter (54 min) following 08:00 dosing compared to 20:00 dosing (96 min). Although the Cmax was higher after morning than evening dosing, it was not significantly so. No other parameter of digoxin pharmacokinetics except Tmax exhibited administration time dependency. (Chronobiology International, 18(5), 841-849, 2001)  相似文献   

14.
It is well known that circadian rhythms modulate human physiology and behavior at various levels. However, chronobiological data concerning mental and sensorimotor states of motor actions are still lacking in the literature. In the present study, we examined the effects of time-of-day on two important aspects of the human motor behavior: prediction and laterality. Motor prediction was experimentally investigated by means of imagined movements and laterality by comparing the difference in temporal performance between right and left arm movements. Ten healthy participants had to actually perform or to imagine performing arm-pointing movements between two targets at different hours of the day (i.e., 08:00, 11:00, 14:00, 17:00, 20:00, and 23:00?h). Executed and imagined movements were accomplished with both the right and left arm. We found that both imagined and executed arm pointing movements significantly fluctuated through the day. Furthermore, the accuracy of motor prediction, investigated by the temporal discrepancy between executed and imagined movements, was significantly better in the afternoon (i.e., 14:00, 17:00, and 20:00?h) than morning (08:00 and 11:00?h) and evening (23:00?h). Our results also revealed that laterality was not stable throughout the day. Indeed, the smallest temporal differences between the two arms appeared at 08:00 and 23:00?h, whereas the largest ones occurred at the end of the morning (11:00?h). The daily variation of motor imagery may suggest that internal predictive models are flexible entities that are continuously updated throughout the day. Likewise, the variations in temporal performance between the right and the left arm during the day may indicate a relative independence of the two body sides in terms of circadian rhythms. In general, our findings suggest that cognitive (i.e., mental imagery) and motor (i.e., laterality) states of human behavior are modulated by circadian rhythms. (Author correspondence: )  相似文献   

15.
The aim of the present study was to examine levels of energetic arousal (EA), tense arousal (TA), and hedonic tone (HT) in individuals with different circadian preferences. Subjects were males with extreme either morning (M-type) or evening (E-type) preferences (N=31), selected using the Morningness-Eveningness Questionnaire cutoff points derived from the Polish population norms. They completed the UWIST Mood Adjective Check List every 1.5 h between 08:00 to 20:00 h in laboratory conditions. The obtained data showed higher levels of TA and lower levels of HT in E-types over the whole day as compared to M-types. As for EA, M-types showed higher levels than E-types between 08:00 to 17:00 h, but the two groups showed no differences during the later hours of the day. Both groups were found to exhibit similar diurnal patterns in TA and HT, and dissimilarity between M-types and E-types appeared in the daily course of EA. The results show the three-dimensional model of mood is more advantageous in M-types than in E-types during the hours of typical human activity.  相似文献   

16.
BACKGROUND/AIMS: Knowledge of the presence or absence of cortisol (F) circadian rhythm in preterm infants is important for the interpretation of F measurements made in samples taken for both clinical and research purposes. Little is known about its emergence in very preterm infants. This study examines circadian rhythm in F secretion in hospitalized infants born before 30 weeks' gestation. METHODS: Design: Prospective longitudinal observational study. Subjects: 11 infants admitted consecutively and born before 30 completed weeks of gestation. Measurements: F was measured by highly specific radioimmunoassay on morning and evening saliva samples gathered at weekly intervals until discharged home. Circadian rhythm was defined as > or =40% reduction from morning to evening level. RESULTS: For all data, the median salivary F was 10.3 nmol/l (range <0.5-372.8). F levels were highest in the first 3 weeks of life. No infants displayed classical circadian rhythm for 4 weeks or more prior to being discharged from hospital. The other infants showed randomly distributed morning and evening F values with a trend in 4 infants towards periods of consistently higher evening than morning values. CONCLUSION: Adult-type F circadian rhythm is rarely evident in hospitalized preterm infants born before 30 weeks' gestation.  相似文献   

17.
The aim of this study was to examine the effects of training at the same time of the day on the diurnal variations of anaerobic performances to provide some recommendations to adjust training hours with the time of the day of competitive events. Thirty participants underwent 8 weeks of lower-extremity progressive resistance training performed 3 times per week designed to promote muscular strength and power. These subjects were randomly assigned to a morning training group (MTG, 07:00-08:00 hours, n = 10), an evening training group (ETG, 17:00-18:00 hours, n = 10), and a control group (CG, completed all tests but did not train, n = 10). Performance in the squat jump, the countermovement jump, the Wingate and 1 repetition maximum (1RM) during leg extension, leg curl, and squat tests was recorded just before and 2 weeks after an 8-week course of regular training. For all the subjects, the morning and evening tests were scheduled at the same time of the day as for the morning and evening training sessions. Before training, the results indicated a significant increase in performance from morning to evening tests (ca. 2.84-17.55% for all tests) for all groups. After training, the diurnal variations in anaerobic performances were blunted in the MTG. In fact, there was no significant difference in muscular power or strength between morning and evening tests. However, these intradaily variations in anaerobic performances persisted in the ETG and CG. From a practical point of view, adaptation to strength training is greater at the time of the day at which training was scheduled than at other times.  相似文献   

18.
The aim of the present study was to examine levels of energetic arousal (EA), tense arousal (TA), and hedonic tone (HT) in individuals with different circadian preferences. Subjects were males with extreme either morning (M‐type) or evening (E‐type) preferences (N=31), selected using the Morningness‐Eveningness Questionnaire cutoff points derived from the Polish population norms. They completed the UWIST Mood Adjective Check List every 1.5 h between 08:00 to 20:00 h in laboratory conditions. The obtained data showed higher levels of TA and lower levels of HT in E‐types over the whole day as compared to M‐types. As for EA, M‐types showed higher levels than E‐types between 08:00 to 17:00 h, but the two groups showed no differences during the later hours of the day. Both groups were found to exhibit similar diurnal patterns in TA and HT, and dissimilarity between M‐types and E‐types appeared in the daily course of EA. The results show the three‐dimensional model of mood is more advantageous in M‐types than in E‐types during the hours of typical human activity.  相似文献   

19.
A total of 18 diurnally active subjects with uncomplicated, mild to moderate, essential hypertension were studied to compare the efficacy of the morning versus evening administration of an oral olmesartan medication. After a two-week, wash-out/placebo run-in period, subjects with clinic diastolic blood pressure (DBP) > or = 90 mm Hg and <110 mm Hg began 12 weeks of 20 mg olmesartan medoxomil tablet therapy at 08:00 h daily. Four of the 18 subjects required dose escalation to 40 mg at eight weeks because of clinic DBP > or = 90 mm Hg. After the 12-week period of once-a-day 08:00 h treatment, subjects were immediately switched to an evening (20:00 h) drug-ingestion schedule for another 12-week period without change in dose. Subjects underwent 24 h ambulatory blood pressure monitoring (ABPM) before the initiation of morning treatment and at the end of both the 12-week morning and evening treatment arms. Dosing time did not exert statistically significant differences on the efficacy of olmesartan: the reduction from baseline in the 24 h mean systolic (SBP) and DBP was, respectively, 18.8 and 14.6 mm Hg with morning dosing and 16.1 and 13.2 mm Hg with evening dosing (p>0.152 between groups). The amplitude of the BP 24 h pattern did not vary with dosing time, indicating full 24 h BP reduction no matter the clock hour of treatment. Although, the BP-lowering effect was somewhat better with morning dosing, the results of this study suggest that the studied olmesartan medoxomil preparation efficiently reduces BP when ingested in the morning (08:00 h) or evening (20:00 h) in equivalent manner, based on statistical testing, throughout the 24 h.  相似文献   

20.
Administration-time differences of gentamicin pharmacokinetics were studied by crossover design after a single intravenous administration of gentamicin (80 mg) to 10 human subjects at 09:00 (morning time) and 22:00 (nighttime). The profiles of serum gentamicin concentration showed a significant statistical difference between 09:00 and 22:00, suggesting circadian variations of pharmacokinetic behaviors. A significant circadian rhythm of pharmacokinetic parameters as a function of time of day was noted in human subjects, showing lower total body clearance Clt and higher serum area under the curve (AUC) when given at nighttime. The half-life t1/2 was shorter in the morning (2.82 h +/- 0.43 h) when compared to the nighttime (2.97 h +/- 0.36 h), but the difference was not statistically significant. The AUC was significantly greater in the morning (23.4 +/- 3.84 micrograms-h/mL) than that in the nighttime (26.3 +/- 5.79 micrograms-h/mL) (p < .05), most likely because the Clt was significantly higher when gentamicin was given in the morning (3.51 +/- 0.57 L/h) versus in the nighttime (3.18 +/- 0.65 L/h). Although the volume of distribution Vd decreased when given at nighttime, it was independent of the dosing time. From this study, there was an administration-time difference of gentamicin pharmacokinetics in human beings. The optimized dosing regimen of gentamicin can be decided by considering circadian rhythm and rest-activity routine so that minimized toxicity and effective therapy are established for patients. The current findings also can be applied to other drugs with circadian rhythms of pharmacokinetics and narrow therapeutic windows in clinical chronotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号