首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cultured rat cells contain five isoforms of tropomyosin (Matsumura, F., Yamashiro-Matsumura, S., and Lin, J.J.-C. (1983) J. Biol. Chem. 258, 6636-6644). To explore the roles of the multiple tropomyosin isoforms in the microfilament organization of cultured cells, we have examined effects of tropomyosins on the bundling activity of the 55-kDa protein recently purified from HeLa cells (Yamashiro-Matsumura, S., and Matsumura, F. (1985) J. Biol. Chem. 260, 5087-5097). Maximum bundling of F-actin was observed at a molar ratio of 55-kDa protein to actin higher than 1:8. None of the isoforms of cultured rat cell tropomyosin significantly altered the F-actin-bundling activity of 55-kDa protein at this ratio, whereas skeletal muscle tropomyosin inhibited the bundling activity to about 50%. Also, cultured cell tropomyosins did not inhibit binding of 55-kDa protein to actin, whereas skeletal muscle tropomyosin inhibited it by 50%. The effect of 55-kDa protein on the binding of tropomyosin to actin varied with the isoform type of tropomyosin. Most (80%) of the tropomyosins with low Mr values (Mr 32,400 or 32,000) were caused to dissociate from actin by 55-kDa protein, but only 20% of tropomyosins with high Mr values (Mr 40,000 or 36,500) was dissociated from actin in these conditions. Immunofluorescence has shown that, while tropomyosin was localized in stress fibers, 55-kDa protein was found in microspikes as well as stress fibers, both of which are known to contain bundles of microfilaments. Therefore, we suggest that 55-kDa protein together with the multiple tropomyosin isoforms may regulate the formation of two types of actin-filament bundles, bundles containing tropomyosin and those without tropomyosin.  相似文献   

2.
We have isolated tropomyosin cDNAs from human skeletal muscle and nonmuscle cDNA libraries and constructed gene-specific DNA probes for each of the four functional tropomyosin genes. These DNA probes were used to define the regulation of the corresponding mRNAs during the process of myogenesis. Tropomyosin regulation was compared with that of beta- and gamma-actin. No two striated muscle-specific tropomyosin mRNAs are coordinately accumulated during myogenesis nor in adult striated muscles. Similarly, no two nonmuscle tropomyosins are coordinately repressed during myogenesis. However, mRNAs encoding the 248 amino acid nonmuscle tropomyosins and beta- and gamma-actin are more persistent in adult skeletal muscle than those encoding the 284 amino acid nonmuscle tropomyosins. In particular, the nonmuscle tropomyosin Tm4 is expressed at similar levels in adult rat nonmuscle and striated muscle tissues. We conclude that each tropomyosin mRNA has its own unique determinants of accumulation and that the 248 amino acid nonmuscle tropomyosins may have a role in the architecture of the adult myofiber. The variable regulation of nonmuscle isoforms during myogenesis suggests that the different isoforms compete for inclusion into cellular structures and that compensating autoregulation of mRNA levels bring gene expression into alignment with the competitiveness of each individual gene product. Such an isoform competition-autoregulatory compensation mechanism would readily explain the unique regulation of each gene.  相似文献   

3.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.  相似文献   

4.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

5.
We have previously shown that rat cultured cells contain five isoforms of tropomyosin (Matsumura, F., Yamashiro-Matsumura, S., and Lin, J. J.-C. (1983) J. Biol. Chem. 258, 6636-6644) and that these tropomyosins are differentially expressed upon cell transformation (Matsumura, F., Lin, J. J.-C., Yamashiro-Matsumura, S., Thomas, G. P., and Topp, W. C. (1983) J. Biol. Chem. 258, 13954-13964). To examine functions of tropomyosin in microfilament organization, we have purified and partially separated the multiple isoforms of tropomyosin by chromatography on hydroxylapatite. Analyses of cross-linked dimers produced by air oxidation have revealed that all isoforms except the tropomyosin isoform with apparent Mr of 35,000 form homodimers. Although these tropomyosins share many properties characteristic of tropomyosin, structural analyses at a peptide level and immunological analyses have shown that the five isoforms can be classified into two groups, i.e. tropomyosins with higher apparent Mr (Mr = 40,000, 36,500, and 35,000) and tropomyosins with lower apparent Mr (Mr = 32,400 and 32,000). The low Mr tropomyosins show less ability for head-to-tail polymerization and lower affinity to actin than the high Mr tropomyosins. We suggest that these differences in properties may be related to the changes in microfilament organization observed in transformed cells.  相似文献   

6.
Tropomyosin purified from rabbit lung macrophages is very similar in structure to other nonmuscle cell tropomyosins. Reduced and denatured, the protein has two polypeptides which migrate during electrophoresis in sodium dodecyl sulfate on polyacrylamide gels with slightly different mobilities corresponding to apparent Mr's of about 30 000. Following cross-linking by air oxidation in the presence of CuCl2, electrophoresis under nonreducing conditions reveals a single polypeptide of Mr 60 000. Macrophage tropomyosin has an isoelectric point of 4.6 and an amino acid composition similar to other tropomyosins. It contains one cysteine residue per chain. In the electron microscope, macrophage tropomyosin molecules rotary shadowed with platinum and carbon are slender, straight rods, 33 nm in length. Macrophage tropomyosin paracrystals grown in high magnesium concentrations have an axial periodicity of 34 nm. On the basis of yields from purification and from two-dimensional electrophoretic analyses of macrophage extracts, tropomyosin comprises less than 0.2% of the total macrophage protein, a molar ratio of approximately 1 tropomyosin molecule to 75 actin monomers in the cell. Macrophage tropomyosin binds to actin filaments. Macrophage, skeletal muscle, and other nonmuscle cell tropomyosins inhibit the fragmentation of actin filaments by the Ca2+-gelsolin complex. The finding implies that tropomyosin may have a role in stabilizing actin filaments in vivo.  相似文献   

7.
Tropomyosins have been isolated from bovine adrenal medulla. Purified from a heat-stable extract, the adrenal medullary tropomyosins show the same chromatographic patterns as platelet tropomyosin components purified under very similar conditions on ion-exchange (DEAE-Sephacel) and hydroxylapatite columns. When analyzed by polyacrylamide gel electrophoresis, the purified fraction, reduced and denatured, yielded three polypeptides with apparent molecular weights of 38,000, 35,500, and 32,000. The molar ratio of the two major polypeptides (38 kd and 32 kd) was 2:1. The predominant form of 38 kd is different from other nonmuscle tropomyosins previously isolated and with which an apparent molecular weight of 30,000 is normally associated. The three adrenal medullary tropomyosins have similar isoelectric points of about 4.7. When adrenal tropomyosins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea, each form showed a shift to a higher molecular weight, which is a characteristic of muscle tropomyosin. The 38,000 adrenal medullary tropomyosin exhibits a stronger affinity for F-actin than the other forms. Peptide profiles obtained after limited proteolytic digestion show some similarity between the two predominant tropomyosins of the bovine adrenal medulla and also between these and the alpha and beta forms of bovine skeletal muscle tropomyosin.  相似文献   

8.
The association of microvillar microfilaments with the microvillar membrane actin-containing transmembrane complex of MAT-C1 13762 ascites tumor cell microvilli has been investigated by differential centrifugation, gel electrophoresis and electron microscopy of detergent extracts of the isolated microvilli. Several methods have been used to reduce breakdown and solubilization of the microfilament core actin during the detergent extractions for preparation of microvillar core microfilaments. Gel electrophoresis of differential centrifugation fractions demonstrated that over 70% of the total microvillus actin could be pelleted with microfilament cores at 10 000 g under extraction conditions which reduce filament breakdown. Transmission electron microscopy (TEM) of all of the core preparations showed arrays of microfilaments and small microfilament bundles. The major protein components of the microfilament cores, observed by sodium dodecyl sulfate (SDS) electrophoresis, were actin and alpha-actinin. Among the less prominent polypeptide components was a 58 000 Dalton polypeptide (58 K), previously identified as a member of the MAT-Cl transmembrane complex. This three-component complex contains, in addition to 58 K, actin associated directly and stably with a cell surface glycoprotein (Carraway, CAC, Jung, G & Carraway, K L, Proc. natl acad. sci. US 80 (1983) 430). Evidence that the apparent association of complex with the microfilament core was not due simply to co-sedimentation was provided by myosin affinity precipitation. These results provide further evidence that the transmembrane complex is a site for the interaction of microfilaments with the microvillar plasma membrane.  相似文献   

9.
Myosin, tropomyosin, and actin were localized in the epithelial cells of rat intestine by means of specific antibodies to chicken gizzard smooth muscle myosin, tropomyosin, and actin by immunohistochemical studies at both the light and electron microscope levels (unlabeled antibody enzyme technique). The pattern of antibody staining was the following (a) Anti-actin was associated with the microfilament bundles of the microvilli in their entire length, as well as with the microfilament network in the terminal web. (b) Anti-myosin was concentrated along the rootlets of the microvillar microfilament bundles and within the filamentous feltwork forming the terminal web. (c) Anti-tropomyosin showed a distribution similar to that of anti- myosin. In addition, the three antibodies also labeled the subplasmalemmal web underneath the cell membrane bordering on the basal lamina. Utilizing the above ultrastructural findings, we wish to propose a functional model of microvillar contraction.  相似文献   

10.
The expression of the different tropomyosin isoforms was analyzed in primary granulosa cell cultures and in established granulosa cell lines cotransfected with SV40 and Ha-ras DNA which retain a high steroidogenic response to cAMP stimulation. In contrast to normal cells which greatly reduce the expression of all tropomyosin isoforms during development of steroidogenic ability, in the doubly transformed cells only the synthesis of the high molecular weight isoforms nos 2 and 3 was decreased. The expression of isoforms 1 and 5 was elevated in the cotransfected lines and that of tropomyosin 1 was further enhanced by cAMP stimulation. The increased synthesis of tropomyosins 1 and 5 is unique to SV40 transformation, since it was observed also in cells transfected with SV40 DNA alone. These cells displayed a well organized microfilament system, but have lost the ability to differentiate. The reduced expression of tropomyosins 2 and 3 and a poorly organized microfilament system appear to be a dominant feature of both the highly differentiated normal- and transformed-granulosa cells. It is suggested that the switches in tropomyosin isoform expression during development of the steroidogenic phenotype and in cell transformation may account for necessary changes in microfilament organization which accompany these cellular processes.  相似文献   

11.
Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.  相似文献   

12.
A 58-kDa protein is found in microvilli and in actin-containing transmembrane complexes of 13762 ascites tumor cells with immobile surface receptors; it is absent from sublines with mobile receptors. 58-kDa protein has been proposed to stabilize microvilli and restrict receptor mobility by stabilizing membrane-microfilament interactions. Antibodies against 58-kDa protein were blot-purified from antisera of rabbits injected with crude transmembrane complex and were used to monitor purification of the protein. 58-kDa protein was extracted from EDTA/EGTA-stripped microvillar microfilament cores with 1 M NaCl. A single depolymerization-polymerization cycle of the microfilaments, followed by solubilization of 58-kDa protein in 1 M NaCl and chromatography on hydroxyapatite-Sephadex G-150, purified the protein to greater than 95% homogeneity. The native molecular weight and frictional coefficient indicated a monomeric, asymmetric structure. 58-kDa protein bound F-actin in pelleting assays and inhibited polymerization of pyrenyl-actin. It also bound phosphatidylserine, phosphatidylinositol, and phosphatidylcholine vesicles in pelleting studies. Immunoblot analyses of endogenously and exogenously proteolyzed microvilli and their membranes and microfilament cores showed specific membrane and microfilament binding fragments of 28-30 kDa. The microfilament- and phospholipid-binding properties of 58-kDa protein and the localization of its proteolysis products are consistent with its proposed role in stabilizing membrane-microfilament interactions in the ascites cell microvilli.  相似文献   

13.
Most eukaryotic cells express multiple isoforms of the actin-binding protein tropomyosin that help construct a variety of cytoskeletal networks. Only one nonmuscle tropomyosin (Tm1A) has previously been described in Drosophila, but developmental defects caused by insertion of P-elements near tropomyosin genes imply the existence of additional, nonmuscle isoforms. Using biochemical and molecular genetic approaches, we identified three tropomyosins expressed in Drosophila S2 cells: Tm1A, Tm1J, and Tm2A. The Tm1A isoform localizes to the cell cortex, lamellar actin networks, and the cleavage furrow of dividing cells—always together with myosin-II. Isoforms Tm1J and Tm2A colocalize around the Golgi apparatus with the formin-family protein Diaphanous, and loss of either isoform perturbs cell cycle progression. During mitosis, Tm1J localizes to the mitotic spindle, where it promotes chromosome segregation. Using chimeras, we identified the determinants of tropomyosin localization near the C-terminus. This work 1) identifies and characterizes previously unknown nonmuscle tropomyosins in Drosophila, 2) reveals a function for tropomyosin in the mitotic spindle, and 3) uncovers sequence elements that specify isoform-specific localizations and functions of tropomyosin.  相似文献   

14.
Membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. These microvilli are covered by a sialomucin complex, composed of the sialomucin ascites sialoglycoprotein-1 (ASGP-1) and the associated concanavalin A (Con A)-binding glycoprotein ASGP-2. Limited proteolysis of the microvilli releases large, highly glycosylated fragments of ASGP-1 from the microvilli and increases the association of ASGP-2 with the Triton-insoluble microvillar microfilament core (Vanderpuye OA, Carraway CAC, Carraway, KL: Exp Cell Res 178:211, 1988). To analyze the topography of ASGP-2 in the membrane and its association with the microfilament core, microvilli were treated with proteinase K for timed intervals and centrifuged. The pelleted microvilli were extracted with Triton X-100 for the preparation of microfilament cores and Triton-soluble proteins or with 0.1 M carbonate, pH 11, for the preparation of microvillar membranes depleted of peripheral membrane proteins. These microvilli fractions were analyzed by dodecyl sulfate gel electrophoresis, lectin blotting with Con A and L-phytohemagglutinin, and immunoblotting with anti-ASGP-2. The earliest major proteolysis product from this procedure was a 70 kDa membrane-bound fragment. At longer times a 60 kDa released fragment, 30-40 kDa Triton-soluble fragments, and 25-30 kDa membrane- and microfilament-associated fragments were observed. Phalloidin shift analysis of microfilament-associated proteins on velocity sedimentation gradients indicated that the 25-30 kDa fragments were strongly associated with the microfilament core. From these studies we propose that ASGP-2 has a site for indirect association with the microfilament core near the membrane on a 15-20 kDa segment.  相似文献   

15.
Tropomyosin isoforms of the low Mr class were isolated from chicken intestinal epithelium and brain, and their physical and functional properties were characterized. Tropomyosin from each tissue contains four distinct polypeptides, all of about 32,000 daltons. In two-dimensional gels, brain tropomyosin contains two major and two minor polypeptides; the major epithelium isoforms coelectrophorese with the two minor brain isoforms. Conversely, only small amounts of the major brain isoforms are detected in the epithelium. Actin-binding properties of brain tropomyosin isoforms are distinct from those of the intestinal epithelium. At 2.5 mM MgCl2 and physiological ionic strength, the intestinal epithelial tropomyosin binds to filamentous actin with an apparent Ka of 8 X 10(6) M-1 whereas brain tropomyosin has an apparent Ka of 8 X 10(5) M-1. Tropomyosin from either tissue binds actin cooperatively with a Hill coefficient of 2.3 for intestinal epithelial cell and 1.95 for brain tropomyosin. Isoforms from both tissues exhibit reduced head-to-tail polymerizability as compared to muscle tropomyosin. The actin-binding properties of intestinal epithelial cell tropomyosin are therefore similar to those of the muscle tropomyosins even though the isoforms have lower molecular weight, a paracrystal structure, and reduced head-to-tail polymerizability typical of the other nonmuscle tropomyosins. These results indicate that a heterogeneity of functional properties may be expressed among the low Mr tropomyosin isoforms.  相似文献   

16.
Multiple isoforms of tropomyosin (TM) of rat cultured cells show differential effects on actin-severing activity of gelsolin. Flow birefringence measurements have revealed that tropomyosin isoforms with high Mr values (high Mr TMs) partially protect actin filaments from fragmentation by gelsolin, while tropomyosins with low Mr values (low Mr TMs) have no significant protection even when the actin filaments have been fully saturated with low Mr TMs. We have also examined effect of nonmuscle caldesmon on the severing activity of gelsolin because 83-kDa nonmuscle caldesmon stimulates actin binding of rat cell TMs (Yamashiro-Matsumura, S., and Matsumura, F. (1988) J. Cell Biol. 106, 1973-1983). While nonmuscle caldesmon alone or low Mr TMs alone show no significant protection against fragmentation by gelsolin, the low Mr TMs coupled with 83-kDa protein are able to protect actin filaments. Further, high Mr TMs together with 83-kDa protein appear to block the severing activity completely. Electron microscopic analyses of length distribution of actin filaments have confirmed the results. The average length of control actin filaments is measured as 1.46 +/- microns, and gelsolin shortens the average length to 0.084 +/- 0.039 micron. Similar short average lengths are obtained when gelsolin severs actin complexed with low Mr TMs (0.080 +/- 0.045 micron) or with nonmuscle caldesmon (0.11 +/- 0.072 micron) while longer average length (0.22 +/- 0.18 micron) is measured in the presence of high Mr TMs. The simultaneous addition of nonmuscle caldesmon makes the average length considerably longer, i.e. 0.61 +/- 0.37 micron in the presence of low Mr TMs and 1.57 +/- 0.97 micron in the presence of high Mr TMs. Furthermore, the actin binding of gelsolin is strongly inhibited by co-addition of high Mr TMs and nonmuscle caldesmon. These results suggest that TM and gelsolin share the same binding site on actin molecules and that the differences in the actin affinities between TMs are related to their abilities of protection against gelsolin.  相似文献   

17.
Tropomyosin is an extended coiled-coil protein that influences actin function by binding longitudinally along thin filaments. The present work compares cardiac tropomyosin and the two tropomyosins from Saccharomyces cerevisiae, TPM1 and TPM2, that are much shorter than vertebrate tropomyosins. Unlike cardiac tropomyosin, the phase of the coiled-coil-forming heptad repeat of TPM2 is discontinuous; it is interrupted by a 4-residue deletion. TPM1 has two such deletions, which flank the 38-residue partial gene duplication that causes TPM1 to span five actins instead of the four of TPM2. Each of the three tropomyosin isoforms modulates actin-myosin interactions, with isoform-specific effects on cooperativity and strength of myosin binding. These different properties can be explained by a model that combines opposite effects, steric hindrance between myosin and tropomyosin when the latter is bound to a subset of its sites on actin, and also indirect, favorable interactions between tropomyosin and myosin, mediated by mutually promoted changes in actin. Both of these effects are influenced by which tropomyosin isoform is present. Finally, the tropomyosins have isoform-specific effects on in vitro sliding speed and on the myosin concentration dependence of this movement, suggesting that non-muscle tropomyosin isoforms exist, at least in part, to modulate myosin function.  相似文献   

18.
Using a newly developed method for microfilament isolation (Matsumura, F., Yamashiro-Matsumura, S. and Lin, J. J.-C. (1983) J. Biol. Chem. 258, 6636-6644), we have analyzed protein composition of microfilaments in "normal" and transformed rat tissue culture cells. They include REF-52 (an established rat embryo cell line) cells, REF-52 transformed by DNA viruses (SV40 or adenovirus type 5), normal rat kidney cells, and normal rat kidney cells transformed by RNA viruses (Kirsten or Rous sarcoma virus). Microfilaments from normal rat culture cells contain three major tropomyosins (apparent Mr = 40,000, 36,500, and 32,400) and two relatively minor tropomyosins (apparent Mr = 35,000 and 32,000). In transformed cells the levels of one or two of the major tropomyosins (Mr = 40,000 and 36,500) are decreased and the levels of one or both of the minor tropomyosins (Mr = 35,000 and 32,000) are increased. These changes in tropomyosin patterns were also observed in temperature shift experiments with rat-1 cells transformed with a Rous sarcoma virus mutant, temperature-sensitive for transformation. Cell-free translation of whole cell mRNA generated similar tropomyosin patterns on two-dimensional gels, suggesting that changes in the pattern of tropomyosin expression were largely effected at the level of RNA rather than by post-translational modification. Such changes in the tropomyosin composition of microfilaments were consistently found to accompany the various morphological alterations associated with transformation. We suggest that alterations in the pattern of tropomyosin expression are involved in, or cause, rearrangement of stress fibers and that this may be responsible (in part) for morphological transformation.  相似文献   

19.
Microfilaments were isolated from cultured mammalian cells, utilizing procedures similar to those for isolation of "native" thin filaments from muscle. Isolated microfilaments from rat embryo, baby hamster kidney (BHK- 21), and Swiss mouse 3T3 cells appeared structurally similar to muscle thin filaments, exhibiting long, 6 nm Diam profiles with a beaded, helical substructure. An arrowhead pattern was observed after reaction of isolated microfilaments with rabbit skeletal muscle myosin subfragment 1. Under appropriate conditions, isolated microfilaments will aggregate into a form that resembles microfilament bundles seen in situ cultured cells. Isolated microfilaments represent a complex of proteins including actin. Some of these components have been tentatively identified, based on coelectrophoresis with purified proteins, as myosin, tropomyosin, and a high molecular weight actin-binding protein. The tropomyosin components of isolated microfilaments were unexpected; polypeptides comigrated on SDS-polyacrylamide gels with both muscle and nonmuscle types of tropomyosin. In order to identify more specifically these subunits, we isolated and partially characterized tropomyosin from three cell types. BHK-21 cell tropomyosin was similar to other nonmuscle tropomyosins, as judged by several criteria. However, tropomyosin isolated from rate embryo and 3T3 cells contained subunits that comigrated with both skeletal muscle and nonmuscle types of myosin, whereas the BHK cell protein consistently contained a minor muscle-like subunit. The array of tropomyosin subunits present in a cell culture was reflected in the polypeptide chain pattern seen on SDS-polyacrylamide gels of microfilaments isolated from that culture. These studies provide a starting point for correlating changes in the ultrastructural organization of microfilaments with alterations in their protein composition.  相似文献   

20.
Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five αTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform’s affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC–actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee–von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号