首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers — OS) or completely (dense shell glycodendrimers — DS) modified with maltose residues. As a model membrane, two types of 100 nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.  相似文献   

2.
The human toxicity of amphotericin B can be considerably reduced by associating the drug with liposomes of varying lipid compositions. Some lipid compositions are much more effective than others. We show that a simple kinetic fluorescence assay using pyranine as an indirect probe of amphotericin-induced K+ currents may be used to study different liposomal drug delivery systems in vitro. We find that lipid mixtures composed of DMPC/DMPG/amphotericin at a 7:3:1 mole ratio show very slow functional delivery with a preference for ergosterol over cholesterol-containing membrane vesicles. On the other hand, amphotericin delivered from egg phosphatidylcholine liposomes lead to 100-fold increases in K+ leakage at one-fifth the amphotericin concentration of the 7:3:1 system. The egg phosphatidylcholine system as well as micellar amphotericin also show a slight selectivity towards cholesterol-containing vesicles over ergosterol. These results are consistent with previous clinical and in vitro cellular studies and this technique may prove valuable in screening of other delivery systems.  相似文献   

3.
UV-visible and dichroic spectrum analysis and electron microscopy have been used to characterize a new amphotericin B (AmB) lipid formulation prepared by a solvent displacement process. The composition was dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) in molar ratio DMPC/DMPG/AmB 7:3:5, a similar composition to that of Abelcet®. Although the latter has a “ribbon-like” structure, our process gave a thin disc-like structure. Analysis of circular dichroism (CD) and UV-visible spectra of formulations containing different percentages of AmB revealed that a minimum of AmB self-association was observed with 7:3:5 molar ratio. Varying the lipid ratio (DMPC/DMPG) while maintaining the fixed ratio of AmB yielded similar results when DMPC was in excess (DMPC/DMPG from 10:0 to 6:4). However, when the ratio was between 5:5 to 3:7, AmB self-aggregation increased. For compositions rich in DMPG (2:8 and 0:10), inversion of the CD spectrum was observed. The influence of the lipid composition on the morphology of the complex was also evident in electron microscopy. DMPC/DMPG/AmB (10:0:5) gave large unfracturable lamellae. The presence of DMPG shortened the lamellae, which often appeared as disc-like structures. AmB content, the presence of DMPG and the preparation process all contribute to generating these original structures with particular CD spectra.  相似文献   

4.
Liposomes composed of synthetic dialkyl cationic lipids and zwitterionic phospholipids such as dioleoylphosphatidylethanolamine have been studied extensively as vehicles for gene delivery, but the broader potentials of these cationic liposomes for drug delivery have not. An understanding of phospholipid-cationic lipid interactions is essential for rational development of this potential. We evaluated the effect of the cationic lipid DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium) on liposome physical properties such as size and membrane domain structure. DSC (differential scanning calorimetry) showed progressive decrease and broadening of the phase transition temperature of dipalmitoylphosphatidylcholine (DPPC) with increasing fraction of DOTAP, in the range of 0.4-20 mol%. Laurdan (6-dodecanolyldimethylamino-naphthalene), a fluorescent probe of membrane domain structure, showed that DOTAP and DPPC remained miscible at all ratios tested. DOTAP reduced the size of spontaneously-forming PC-containing liposomes, regardless of the acyl chain length and degree of saturation. The anionic lipid DOPG (dioleoylphosphatidylglycerol) had similar effects on DPPC membrane fluidity and size. However, DOTAP/DOPC (50/50) vesicles were taken up avidly by OVCAR-3 human ovarian tumor cells, in contrast to DOPG/DOPC (50/50) liposomes. Overall, DOTAP exerts potent effects on bilayer physical properties, and may provide advantages for drug delivery.  相似文献   

5.
When interacting with phospholipid in an aqueous environment, amphotericin B forms unusual structures of markedly reduced toxicity (Janoff et al. (1988) Proc. Natl. Acad. Sci. USA 85, 6122-6126). These structures, which appear ribbon-like by freeze-fracture electron microscopy (EM), are found exclusively at amphotericin B to lipid mole ratios of 1:3 to 1:1. At lower mole ratios they occur in combination with liposomes. Circular dichroism (CD) spectra revealed two distinct modes of lipid-amphotericin B interaction, one for liposomes and one for the ribbon-like structures. In isolated liposomes, amphotericin B which comprised 3-4 mole percent of the bulk lipid was monomeric and exhibited a hemolytic activity comparable to amphotericin B suspended in deoxycholate. Above 3-4 mole percent amphotericin B, ribbon-like structures emerged and CD spectra indicated drug-lipid complexation. Minimal inhibitory concentrations for Candida albicans of liposomal and complexed amphotericin B were comparable and could be attributed to amphotericin a release as a result of lipid breakdown within the ribbon-like material by a heat labile extracellular yeast product (lipase). Negative stain EM of the ribbon-like structures indicated that the ribbon-like appearance seen by freeze-fracture EM arises as a consequence of the cross-fracturing of what are aggregated, collapsed single lamellar, presumably interdigitated, membranes. Studies examining complexation of amphotericin B with either DMPC or DMPG demonstrated that headgroup interactions played little role in the formation of the ribbon-like structures. With these results we propose that ribbon-like structures result from phase separation of amphotericin B-phospholipid complexes within the phospholipid matrix such that amphotericin B release, and thus acute toxicity, is curtailed. Formation of amphotericin B-lipid structures such as those described here indicates a possible new role for lipid as a stabilizing matrix for drug delivery of lipophilic substances, specifically where a highly ordered packing arrangement between lipid and compound can be achieved.  相似文献   

6.
7.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 degrees C or 4 degrees C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

8.
Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.  相似文献   

9.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

10.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 °C or 4 °C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

11.
Abstract

The efficacy of using liposomes to transfer DNA to chicken sperm cells was investigated. Liposomes were prepared from dilauroyl (12:0) phosphatidylcholine (DLPC), dimyristoyl (14:0) phosphatidyl choline (DMPC), dipalmitoyl (16:0) phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (EYPC) or lipids extracted from sperm cell membranes. The efficiency of trapping of DNA into the liposomes, transfer of the DNA from the liposomes to the sperm cells and the effect of the liposomes on the fertilizing ability of the sperm cells were determined. Increasing the concentration of lipid in the liposome preparations increased the trapping efficiency of DNA into liposomes but lowered the transfer of DNA to sperm. Including stearylamine (SA) in the liposomes increased the incorporation of DNA into the liposomes and the DNA transfer to sperm cells, while including lauroyllysophosphatidylcholine (LPC) along with SA resulted in the highest transfer efficiency from liposomes to sperm. The transfer of DNA from liposomes to sperm cells was lowered by increasing the number of sperm cells, while decreasing the number of sperm cells lowered the fertility. The sperm cells remained fertile after exposure to low levels of DPPC or lipofectin reagent or to high levels of SA and LPC. The best conditions for liposome‐mediated gene transfer to chicken sperm cells are thus using either lipofectin reagent at .006 to .06 μmol/ml and 5 × 107 sperm or with DPPC liposomes comprised of 10 μmol/ml total lipid including 5 mol% SA and 20 mol% LPC with 2.5 × 108 sperm cells. The use of liposomes to enhance the transfer of DNA to sperm cells may make the use of sperm cells as gene transfer vectors possible.  相似文献   

12.
By encapsulating a pH-sensitive dye, phenol red, in multilamellar liposomes of DMPC, DPPC and DMPC/DPPC mixtures, the permeability of these phospholipid bilayers to dye as a function of temperature has been studied. For both DMPC and DPPC liposomes, dye release begins well below the main gel-to-liquid-crystalline phase transition (24°C and 42°C, respectively) at temperatures corresponding to the onset of the pretransition (about 14°C and 36°C, respectively) with DPPC liposomes exhibiting a permeability anomaly at the main phase transition (42°C). The perturbation occurring in the bilayer structure that allows the release of encapsulated phenol red (approx. 5 Å diameter) is not sufficient to permit the release of encapsulated haemoglobin (approx. 20 Å diameter, negatively charged). In liposomes composed of a range of DMPC/DPPC mixtures, dye release commences at the onset of the pretransition range (determined by optical absorbance measurements) and increases with increasing temperature until the first appearance of liquid crystalline phase after which no further dye release occurs. Interestingly, the dye retaining properties of DMPC and DPPC liposomes well below their respective pretransition temperature regions are very different: DMPC liposomes release much encapsulated dye at incubation temperatures of 5°C whilst DPPC liposomes do not.  相似文献   

13.
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes’ content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake]Total from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93?±?12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake]Total with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6?±?1.5, 17.6?±?1.2, and 34?±?3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87?±?3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.  相似文献   

14.
A fatty acid spin label, 16-doxyl-stearic acid, was used to determine the percent interdigitated lipid in mixtures of a neutral phospholipid and an acidic phospholipid. Interdigitation of the acidic lipid was induced with polymyxin B (PMB) at a mole ratio of PMB to acidic lipid of 1:5. This compound does not bind significantly to neutral lipids or induce interdigitation of the neutral lipids by themselves. The neutral lipids used were dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or dipalmitoylphosphatidylethanolamine (DPPE), and the acidic lipids were dipalmitoylphosphatidylglycerol (DPPG) or dipalmitoylphosphatidic acid (DPPA). The percent interdigitated lipid was determined from the percent of the spin label which is motionally restricted, assuming that the spin label is homogeneously distributed in the lipid. Assuming further that 100% of the acidic lipid is interdigitated at this saturating concentration of PMB, the percentage of the neutral lipid which can become interdigitated along with it was calculated. The results indicate that about 20 mole % DPPC can be incorporated into and become interdigitated in the interdigitated bilayer of PMB/DPPG at 4 degrees C. As the temperature approaches the phase transition temperature, the lipid becomes progressively less interdigitated; this occurs to a greater degree for the mixtures than for the single acidic lipid. Thus the presence of DPPC promotes transformation of the acidic lipid to a non-interdigitated bilayer at higher temperatures. At the temperature of the lipid phase transition little or none of the lipid in the mixture is interdigitated. Thus the lipid phase transition detected by calorimetry is not that of the interdigitated bilayer. The shorter chain length DMPC can be incorporated to a greater extent than DPPC, 30-50 mol%, in the interdigitated bilayer of PMB-DPPG. This may be a result of reduced exposure of the terminal methyl groups of the shorter myristoyl chains at the polar/apolar interface of the interdigitated bilayer. Less than 29% of the total lipid was interdigitated in a DPPC/DPPA/PMB 1:1:0.2 mixture indicating that none of the DPPC in this mixture becomes interdigitated. This is attributed to the lateral interlipid hydrogen bonding interactions of DPPA which inhibits formation of an interdigitated bilayer. DPPE was found to be incorporated into the interdigitated bilayer of PMB-DPPG to a similar extent as DPPC if the amount of PMB added is sufficient to bind to only the DPPG in the mixture. Differential scanning calorimetry showed that the remaining non-interdigitated DPPE-enriched mixture phase separates into its own domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The interactions between amphotericin B and sterol-containing model membranes were monitored by 2H-NMR of deuterium-labelled dimyristoylphosphatidylcholine (DMPC), cholesterol and epicholesterol. The addition of amphotericin B to a cholesterol/DMPC (3:7) system was perceived differently by the lipid, depending upon the depth in the bilayer: no structural change was manifest in the acyl chain region associated with the plateau in molecular ordering (C4'), whereas the lipid clearly senses two environments near the center of the bilayer (C13', C14'). The amount as well as the ordering properties of the more ordered antibiotic-induced component, sensed at C14', increased with decreasing temperature. The structural parameters of deuterium-labelled cholesterol in cholesterol/DMPC mixtures were unchanged upon addition of amphotericin B, regardless of the bilayer depth. Upon addition of amphotericin B, the lipid T1 values are unchanged, whereas the T2 values are reduced by a factor of 2. The minimum in T1 observed for cholesterol in DMPC at 32-35 degrees C was shifted towards 38-40 degrees C in the presence of amphotericin B. Epicholesterol-containing dispersions of DMPC had properties similar to those of their cholesterol-containing analogs; a noticeable difference between the systems was an approx. 10% increase in the segmental order parameters on the addition of amphotericin B to the system containing the alpha-isomer of cholesterol. The concept of a dynamic complexation between amphotericin B and sterol is discussed.  相似文献   

16.
The influence of melittin, a monomer devoid of the phospholipase activity, on the size and permeability of liposomes from egg lecithin (PC), dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) has been investigated by the methods of fluorescence spectroscopy, quasi-elastic light scattering and freeze-fracture electron microscopy. While studying calcein release from liposomes under the influence of melittin it has been shown that binding of melittin with a bilayer is a fast process which depends on the concentration lipid: protein (Ri) ratio as well as on the phase state of the lipid. The lipids being in the liquid-crystalline forms (PC and DMPC) are characterized by a more rapid release of the dye-stuff from liposomes than DPPC vesicles being in gel state with the same Ri. Under the influence of different melittin concentrations heterogeneity of the system and its medium hydrodynamic size of particles at first increases (100 less than or equal to Ri less than 500) due to their fusion and then these parameters decrease to the initial values.  相似文献   

17.
Glycophorin from human erythrocytes has been incorporated into liposomes of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC). The thermal properties of unsonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 have been studied by differential scanning calorimetry and the numbers of lipids withdrawn from participation in the gel-to-lamellar phase transition were found to be 42±22 (DMPC), 197±28 (DPPC) and 240±64 (DSPC). The initial rates of agglutination of sonicated liposomes with glycophorin/lipid molar ratios up to 4·10?3 by wheat germ agglutinin in the concentration range 0–7 μM have been measured over a range of temperature. Below the gel-to-lamellar phase transition (Tc) the rates of agglutination increase with acyl chain length in the sequence DMPC < DPPC < DSPC. Agglutination is found to be second order in liposome concentration and is completely reversed on saturation of the wheat germ agglutinin-binding sites by N-acetylglucosamine. Agglutination rates decrease with increasing temperature below Tc and are largely independent of temperature above Tc. The results are discussed in relation to the clustering of glycophorin in the phospholipid bilayers and its effect on binding and subsequent interliposomal bridge formation by wheat germ agglutinin.  相似文献   

18.
Melittin-induced membrane fusion between neutral and acidic phospholipids was examined in liposome systems with a high-sensitivity differential scanning calorimeter. Membrane fusion could be detected by calorimetric measurement by observing thermograms of mixed liposomal lipids. The roles of hydrophobic and electrostatic interactions were investigated in membrane fusion induced by melittin. Melittin, a bee venom peptide, is composed of a hydrophobic region including hydrophobic amino acids and a positively charged region including basic amino acids. When phosphatidylcholine liposomes were prepared in the presence of melittin, reductions in the phase transition enthalpies were observed in the following order; dimyristoylphosphatidylcholine (DMPC) > dipalmitoylphosphatidylcholine (DPPC) > distearoylphosphatidylcholine (DSPC) > dielaidoylphosphatidylcholine (DEPC). The plase transition enthalpy of an acidic phospholipid, dipalmitoylphosphatidylserine (DPPS), was raised by melittin at low concentrations, then reduced at higher concentrations. DPPC liposomes prepared in melittin solution were fused with DPPS liposomes when the liposomal dispersions were mixed and incubated. Similar fusion was observed between dipalmitoylphosphatidylcholine and dimyristoylphosphatidic acid (DMPA) liposomes. These results indicate that a peptide including hydrophobic and basic regions can mediate membrane fusion between neutral and acidic liposomes by hydrophobic and electrostatic interactions.  相似文献   

19.
High inhibitory effects of hybrid liposomes (HL) themselves composed of DMPC/10 mol% C12(EO)23 on the growth of HL-60 cells were obtained without any drug. Induction of apoptosis was obtained by the HL of DMPC/10 mol% C12(EO)23. On the other hand, necrosis was observed for the HL of DLPC/10 mol% C12(EO)23. In the case of DPPC/10 mol% C12(EO)23, neither apoptosis nor necrosis was observed.  相似文献   

20.
The interactions of a series of amphipathic alpha-helical peptides containing from 6 to 18 amino acid residues with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied by optical and calorimetric methods. Several peptides rapidly decreased the turbidity of DMPC and DPPC liposomes when mixed at the phase transition temperatures of the lipids. The extent of the clearing depended upon the chain length of the peptides, with the most effective clearing attained with peptides 10-12 residues in length. An eight-residue peptide was somewhat less effective and a six-residue peptide had no effect on liposome structure. The peptides formed small micellar structures, as judged by gel filtration chromatography. The effects of the peptides on the phase transitions of the lipids were examined by differential scanning calorimetry. The peptides that were most effective in disrupting the liposomes and forming clear micelles were also most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of the lipid. The addition of DMPC or DPPC liposomes to the peptides increased the magnitude of the negative bonds at 208 and 222 nm in circular dichroism measurements, consistent with the expected formation of alpha-helical structure on binding to lipid. The extent of burial of the single tryptophan residue in the peptides was determined by fluorescence spectroscopy. In peptides that bound to lipid, the tryptophan was in a less solvent-exposed environment in the presence of lipid, as evidenced by a blue shift in the fluorescence emission maximum of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号