首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of LPS on cysteinyl leukotriene (LT) synthesis and LTC(4) synthase expression in mononuclear phagocytes. Conditioning of the monocyte-like cell line, THP-1, with LPS for 7 days resulted in significantly decreased ionophore-stimulated LTC(4) release. The putative LPS receptor, Toll-like receptor 4, was expressed in THP-1 cells. LPS down-regulated LTC(4) synthase mRNA in THP-1 cells in a dose- and time-dependent manner, with down-regulation observed as early as 4 h. Conditioning of actinomycin D-treated cells with LPS resulted in no change in the rate of LTC(4) synthase mRNA decay. LPS treatment of THP-1 cells, transiently transfected with a LTC(4) synthase promoter (1.35 kb)-reporter construct, decreased promoter activity. Neutralization of TNF-alpha and inhibition of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase did not inhibit the effect of LPS. Treatment of cells with a Toll-like receptor 4-blocking Ab and an inhibitor of NF-kappaB activation resulted in inhibition of the LPS effect, while activation of NF-kappaB and p50/p65 overexpression down-regulated the LTC(4) synthase gene. LPS down-regulates cysteinyl LT release and LTC(4) synthase gene expression in mononuclear phagocytes by an NF-kappaB-mediated mechanism.  相似文献   

2.
3.
A human monocytic cell line, THP-1, stimulated with 40 nM phorbol myristate acetate (PMA), differentiated to macrophage-like cells, and exhibited increased expression and release of interleukin-1 beta and expression of acetylated low density lipoprotein (ac-LDL) receptors. A selective inhibitor, MDL 29,152 (4-propyl-5-(4-quinolinyl)-2(3H)-oxazolone) was used to show that this induction required activation of protein kinase C. MDL 29,152 acts in the catalytic domain of protein kinase C and is at least 200-fold selective for protein kinase C over cAMP-dependent protein kinase in THP-1 cells. MDL 29,152 (50 microM) reduced levels of interleukin-1 beta mRNA in PMA-stimulated cells by 76% and eliminated detectable interleukin-1 beta in the media. Flow cytometric analysis showed that 48 h after THP-1 activation, approximately 50% of the cells expressed ac-LDL receptors, while in the presence of 100 microM MDL 29,152, less than 5% of the cells expressed receptors. The relationship between THP-1 differentiation and protein kinase C activation was determined by following the expression of the cell surface antigen MO-1. Expression of MO-1 antigen increases as monocytes differentiate to macrophages. After 48 h of phorbol activation, 90% of the THP-1 population was MO-1-positive; less than 16% of the population was MO-1-positive when 100 microM MDL 29,152 was present. By dual analysis, it was found that within the differentiated, MO-1-positive population, only approximately 50% of the cells also expressed ac-LDL receptors. Based on these findings, we conclude that protein kinase C promotes processes important in THP-1 activation and differentiation to macrophage-like cells including interleukin-1 beta expression and secretion, ac-LDL receptor and MO-1 expression.  相似文献   

4.
Human monocytic cell line THP-1 incubated with as little as 10 ng/ml of phorbol myristate acetate bound and metabolized 1-2 micrograms of Ac-LDL over a 5-h period. In the absence of phorbol treatment, no specific metabolism of Ac-LDL occurred. Optimal levels of receptor were reached after 72 h of exposure. Induction of receptor was dependent on protein and RNA synthesis and was partially reversed upon removal of the phorbol. Induction of receptor required activation of the protein kinase C pathway. Metabolism of Ac-LDL by THP-1 cells at 37 degrees C was saturated at 25 micrograms/ml. Binding at 4 degrees C was saturable with an average Kd of 8.0 x 10(-9) M. Cell population studies by fluorescent activated cell sorting indicated that approximately 87% of the THP-1 population was expressing scavenger receptor activity 96 h after phorbol treatment as compared to 99% for murine macrophage cell line P388D1. Uptake of Ac-LDL by THP-1 resulted in an 11-fold increase in the rate of cholesterol esterification which was saturable at 50 micrograms/ml. Incubation of cells for 48 h with 50 micrograms/ml of Ac-LDL resulted in a 60% increase in free cholesterol and a 10-fold increase in the cholesteryl ester content of the cells. Lipid accumulation in THP-1 cells after Ac-LDL uptake was readily visible by Oil Red-O staining. Solubilization of THP-1 cells, before and after phorbol treatment, followed by ligand blotting with Ac-LDL detected the presence of a 250-kDa protein only in cells treated with phorbol. The protein comigrated with the scavenger receptor derived from mouse macrophage cell line P388D1.  相似文献   

5.
Certain immunocompetent myeloid cells, such as eosinophils, basophils and mast cells, have a large capacity to synthesize the potent proinflammatory and spasmogenic mediator leukotriene (LT) C4 via a specific microsomal glutathione S-transferase (MGST) termed LTC4 synthase (LTC4S). Here, we report that MGST2, a distant homologue of LTC4S, is abundantly expressed in Human umbilical vein endothelial cells (HUVEC) and converts LTA4 into a single product, LTC4. Thus, using Northern blot, RT-PCR, Western blot, and enzyme activity assays, we show that MGST2 is the main, if not the only, enzyme that converts LTA4 into LTC4 in membrane preparations of HUVEC. In fact, we failed to detect any expression of LTC4S, MGST1 or MGST3 in these cells, indicating that MGST2 is a critical enzyme for transcellular LTC4 biosynthesis in the vascular wall. Unlike LTC4S, MGST2 prefers the naturally occurring free acid of LTA4 over the methyl ester as substrate and is also susceptible to product inhibition with an IC50 of about 1 microM for LTC4. Moreover, HUVEC were found to express the CysLT1 receptor in line with a paracrine and autocrine role for cysteinyl-leukotrienes in endothelial cell function.  相似文献   

6.
Leukotriene (LT)C4 synthase is a membrane-bound, specific glutathione transferase which catalyzes the transformation of LTA4 to LTC4. It was originally shown to be present in rodent mastocytoma and basophilic leukemia cells as well as in macrophages. Recently, expression of human LTC4 synthase was demonstrated in platelets (S?derstr?m, M., et al. (1992) Arch. Biochem. Biophys. 294, 70-74). The present report describes the induction of LTC4 synthase activity during differentiation of human erythroleukemia (HEL) cells by the protein kinase C stimulator 12-O-tetradecanoyl phorbol 13-acetate (TPA), ligands of the steroid-thyroid hormone receptor superfamily: all-trans-retinoic acid (RA) and 1 alpha, 25-dihydroxy-vitamin D3 and in addition dimethylsulfoxide (DMSO). TPA was the most powerful inducer of enzyme activity followed by 1 alpha, 25-dihydroxy-vitamin D3 and DMSO. RA did not induce LTC4 synthase activity.  相似文献   

7.
8.
R Nolfo  J A Rankin 《Prostaglandins》1990,39(2):157-165
U937 and THP-1 cells possess some characteristics of human mononuclear phagocytes, cells which synthesize and release LTB4, LTC4, and LTD4. Incubation of these cells with recombinant human interferon-gamma (IFN-gamma) or Phorbol Myristate Acetate (PMA) induces a more differentiated cell state. We hypothesized that U937 and THP-1 cells would release LTB4, LTC4, and LTD4 in response to stimulation with the non-physiologic agonist, calcium ionophore A23187 and that preincubation with IFN-gamma or PMA might alter leukotriene release by these cells. We cultured both cell lines for 48 hours in the presence and absence of IFN-gamma (1000 units/ml) and for 120 hours in the presence and absence of PMA (160 nM) and then challenged them with A23187 (5uM) for 30 minutes at 37 degrees C. The supernatants were deproteinated and assayed by RIA for LTB4 and LTC4 and by RP-HPLC for LTB4, LTC4, and LTD4. Neither U937 nor THP-1 cells released quantities of leukotrienes detectable by RIA, less than 0.3ng/5 X 10(6) cells. Peripheral blood mononuclear phagocytes from normal volunteers, cultured and challenged in vitro at under identical conditions, released 11.3 +/- 2.9 ng LTB4 and 2.0 +/- 1.5 ng LTC4/10(6) viable monocytes. The lack of leukotriene production by U937 and THP-1 cells was not altered by preincubation for 48 hours with IFN-gamma (n = 3) nor by preincubation with PMA for 120 hours (n = 3). We conclude 1) U937 and THP-1 cells do not appear to be appropriate in vitro models for the examination of leukotriene release from normal mononuclear phagocytes. 2) Pre-incubation of U937 and THP-1 cells with IFN-gamma or PMA under the conditions tested, does not induce the ability of these cell lines to release leukotrienes.  相似文献   

9.
10.
Leukotriene C(4) synthase (LTC(4) S) is considered a pivotal enzyme for generation of potent proinflammatory mediators, cysteinyl-leukotrienes (cysLTs). LTC(4) S cDNA was cloned in rat basophilic leukemia-1 (RBL-1) cells, and exhibited 84.8% and 94.5% identity with the reported human and mouse LTC(4) S cDNA sequences, respectively. Homology between the rat LTC(4) S amino acid sequence and the corresponding sequences from the other species was 86.5% and 95.3% with human and mouse sequences, respectively. Rat LTC(4) S thus showed extensive homology with both mouse and human cDNA sequences. The active enzyme as assessed by LTC(4) S activity was expressed in COS-7 cells. While RBL-1 cells after the culture for 48 h in the presence of 0.1 microg/ml all trans -retinoic acid (RA) exhibited 27 times higher LTC(4) S activity than control cells, Northern-blot analysis of RA-treated cells showed upregulation of LTC(4) S mRNA. Polyclonal antibody was raised against the synthesized peptide deduced from the nucleotide sequence. Thus, Western-blot analysis of RBL-1 cells treated with RA and COS-7 cells transfected with pcDNA-LTC(4) S commonly showed a band at approximately 18 kDa in each solubilized enzyme solution, but either control cells did not. This cDNA probe and antibody may be useful for investigating the roles of cysLTs in various experimental models of rats.  相似文献   

11.
Platelet activating factor (PAF) interacts with cell surface G protein-coupled receptors on leukocytes to induce degranulation, leukotriene C(4) (LTC(4)) generation, and chemokine CCL2 production. Using a basophilic leukemia RBL-2H3 cell line expressing wild-type PAF receptor (PAFR) and a phosphorylation-deficient mutant (mPAFR), we have previously demonstrated that receptor phosphorylation mediates desensitization of PAF-induced degranulation. Here, we sought to determine the role of receptor phosphorylation on PAF-induced LTC(4) generation and CCL2 production. We found that PAF caused a significantly enhanced LTC(4) generation in cells expressing mPAFR when compared with PAFR cells. In contrast, PAF-induced CCL2 production was greatly reduced in mPAFR cells. Pertussis toxin and U0126, which inhibit G(i) and p44/42 mitogen-activated protein kinase (ERK) activation, respectively, caused very little inhibition of PAF-induced CCL2 production (approximately 20% inhibition). In contrast, these inhibitors almost completely blocked both PAF-induced ERK phosphorylation and LTC(4) generation in PAFR cells. However, in mPAFR cells pertussis toxin only partially inhibited PAF-induced ERK phosphorylation. A Ca(2+)/calmodulin inhibitor had no effect on PAF-induced ERK phosphorylation in PAFR cells but completely blocked the response in mPAFR cells. These data demonstrate that receptor phosphorylation, which serves to desensitize PAF-induced LTC(4) generation, is required for chemokine CCL2 production. They also indicate a previously unrecognized selectivity in G protein usage and ERK activation for PAF-induced responses. Whereas PAF-induced CCL2 production is, in large part, mediated independently of G(i) activation or ERK phosphorylation, LTC(4) generation requires ERK phosphorylation, which is mediated by different G proteins depending on the phosphorylation status of the receptor.  相似文献   

12.
13.
To determine whether insulin activates protein kinase C in BC3H-1 myocytes, we evaluated changes in protein phosphorylation, protein kinase activities, and the intracellular translocation of protein kinase C activity in response to insulin and phorbol esters. Phorbol 12-myristate 13-acetate (PMA), but not insulin, stimulated the phosphorylation of an acidic Mr 80,000 protein which has been shown to be an apparently specific marker for protein kinase C activation. In addition, PMA, but not insulin, stimulated the rapid association of protein kinase C activity with a cellular particulate fraction. In contrast to these differences, both insulin and PMA stimulated the phosphorylation of ribosomal protein S6 and activated a ribosomal protein S6 kinase in cell-free extracts from cells exposed to these agents. In cells exposed to high concentrations of PMA for 16 h, protein kinase C activity and immunoreactivity were abolished, without changes in cellular morphology. Under these conditions, insulin, but not PMA, stimulated phosphorylation of the ribosomal protein S6 in intact cells and activated the S6 kinase in cell-free extracts derived from insulin-treated intact cells. We conclude that: insulin does not appear to activate protein kinase C in BC3H-1 myocytes, at least as assessed by phosphorylation of the Mr 80,000 protein; both insulin and PMA activate an S6 protein kinase in these cells; and insulin can promote S6 phosphorylation and activate the S6 kinase normally in protein kinase C-deficient cells. Activation of the S6 kinase by insulin and PMA, although apparently proceeding through different mechanisms, may explain some of the similar biological actions of these compounds in BC3H-1 myocytes.  相似文献   

14.
Inulin is a polysaccharide that enhances various immune responses, mainly to T and B cells, natural killer cells, and macrophages in vivo and in vitro. Previous reports describe that inulin activates macrophages indirectly by affecting the alternative complement pathway. In this study, we examined the direct effect of inulin on PMA-treated THP-1 macrophages. Inulin treatment did not stimulate the proliferation of THP-1 macrophages at all. However, inulin treatment significantly increased phagocytosis of the polystyrene beads without the influence of serum. Doses of around 1 mg/mL had the maximal effect, and significant progression of phagocytosis occurred at times treated over 6 h. Inulin augmented phagocytosis not only with polystyrene beads but also with apoptotic cancer cells. The inulin-induced phagocytosis uptake was suppressed in Toll-like receptor (TLR) 4 mutated C3H/HeJ mice peritoneal macrophages. Moreover, inulin-induced THP-1 macrophage TNF-α secretion was inhibited using a blocking antibody specific to TLR4, suggesting that TLR4 is involved in the binding of inulin to macrophages. Furthermore, we used specific kinase inhibitors to assess the involvement of inulin-induced phagocytosis and revealed that phosphoinositide 3-kinase and mitogen-activated protein kinase, especially p38, participated in phagocytosis. These results suggest that inulin affects macrophages directly by involving the TLR4 signaling pathway and stimulating phagocytosis for enhancing immunomodulation.  相似文献   

15.
Toll-like receptor 4 (TLR4) induces an innate immune response in mammals by recognizing lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria. In this study, we show that tyrosine kinase Syk constitutively associates with TLR4 in THP-1 cells. As previously reported in peripheral blood mononuclear cells, TLR4 gets inducibly tyrosine phosphorylated upon LPS engagement in THP-1 cells. Piceatannol, a pharmacological inhibitor of the tyrosine kinase Syk, abrogates TLR4 tyrosine phosphorylation at low doses. The kinetics of TLR4 tyrosine phosphorylation in THP-1 cells coincides with an early wave of Syk tyrosine phosphorylation. Additionally, serine threonine kinase interleukin-1 (IL1) receptor-associated kinase 1 (IRAK-1) is transiently recruited to the complex containing adaptor molecule MyD88, TLR4 and Syk within 1 min of LPS engagement and dissociates by 30 min. Finally, the inhibition of Syk with piceatannol has no effect on LPS-mediated release of cytokines IL6, IL1beta, tumor necrosis factor-alpha, neither on chemokines macrophage inhibitory protein (MIP)1alpha, MIP1beta, monocyte chemoattractant protein -1, IL8, Groalpha and RANTES. However, IL10 and IL12p40 releases are significantly inhibited. Our findings implicate Syk as a novel modulator of LPS-mediated TLR4 responses in human monocytic cells and shed insight into the kinetics of early complex formation upon LPS engagement.  相似文献   

16.
Lee JS  Kim IS  Ryu JS  Yun CY 《Cytokine》2008,42(3):365-371
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C δ (PKC δ), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC δ, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5 min and peaked at 30 min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC δ (p < 0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .  相似文献   

17.
Reactive mastocytosis (RM) in epithelial surfaces is a consistent Th2-associated feature of allergic disease. RM fails to develop in mice lacking leukotriene (LT) C4 synthase (LTC4S), which is required for cysteinyl leukotriene (cys-LT) production. We now report that IL-4, which induces LTC4S expression by mast cells (MCs), requires cys-LTs, the cys-LT type 1 receptor (CysLT1), and Gi proteins to promote MC proliferation. LTD4 (10-1000 nM) enhanced proliferation of human MCs in a CysLT1-dependent, pertussis toxin-sensitive manner. LTD4-induced phosphorylation of ERK required transactivation of c-kit. IL-4-driven comitogenesis was likewise sensitive to pertussis toxin or a CysLT1-selective antagonist and was attenuated by treatment with leukotriene synthesis inhibitors. Mouse MCs lacking LTC4S or CysLT1 showed substantially diminished IL-4-induced comitogenesis. Thus, IL-4 induces proliferation in part by inducing LTC4S and cys-LT generation, which causes CysLT1 to transactivate c-kit in RM.  相似文献   

18.
Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK.  相似文献   

19.
Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2 expression.  相似文献   

20.
Effect of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, WY-14,643 (WY) and/or clofibrate, on the leucine-induced phosphorylation of translational targets in C2C12 myoblasts was studied. C2C12 cells were treated with WY or clofibrate for 24 h prior to stimulation with leucine. Western blot analyses revealed that the leucine-induced phosphorylation of p70 S6 kinase (p70S6K), a key regulator of translation initiation, was significantly higher in WY-treated cells than in control and clofibrate-treated cells. Phosphorylation of extracellular-regulated kinase (ERK1/2) was higher in WY-treated cells. WY treatment also increased the leucine-induced phosphorylation of ribosomal protein S6 and eukaryotic initiation factor 4B. In contrast, eukaryotic elongation factor 2, a marker for peptide chain elongation process, was significantly activated (dephosphorylated) only in leucine-stimulated control cells. Pre-treatment of the cells with PD98059 (ERK1/2 kinase inhibitor) prevented the phosphorylation of ERK1/2 and decreased the leucine-induced phosphorylation of p70S6K. It is concluded that WY increased the leucine-induced phosphorylation of target proteins involving in translation initiation via ERK/p70S6K pathway, but impaired the signaling for elongation process, suggesting that p70S6K phosphorylation may be essential, but not sufficient for the activation of entire targets for protein translation in WY-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号