首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile salt sulfotransferase from guinea pig liver is purified by the procedures of ammonium sulfate fractionation, Sephadex G-100 column chromatography, agarose-hexane-adenosine 3′,5′-diphosphate affinity chromatography and polyacrylamide gel electrophoresis. The purified enzyme exhibits a pH optimum of 6.8, an isoelectric point of 5.6 and a molecular weight of 7600 estimated by gel filtration technique. The apparent Km values of the enzyme are 7.7·10?5 M for taurolithocholate and 1.4·10?6 M for 3′-phosphoadenosine 5′-phosphosulfate. It requires Mg2+ and free sulfohydryl group(s) for activity. The enzyme reacts with hydroxy groups of bile salts at both 3α and 3β positions. No activity is found in the kidney of guinea pig. The purified enzyme does not react with estrone, estradiol, testosterone, dehydroepiandrosterone, cholesterol, phenol, tyramine, and serotonin. The results indicate that bile salt sulfotransferase is distinct from other hepatic sulfotransferases.  相似文献   

2.
Isolated intestinal mucosa cells of the guinea pig were employed to study intestinal transport of bile acids. Chenodeoxycholate and lithocholate were rapidly taken up into jejunal and ileal cells by diffusion. Taurocholate and cholate however showed only a minor diffusion rate and were preferentially taken up by the ileal bile acid carrier. This uptake was saturable with an apparent Km of 231 μM and V of 7 nmol/mg protein per min for taurocholate; this bile acid was accumulated 90-fold. Its uptake was strongly inhibited by antimycin A, FCCP, ouabain or Na+-deficiency in the medium. Sugars or amino acids did not interfere with uptake. Experimental conditions were optimized with regard to incubation medium, cell amount, cell age and length of preincubation. It is concluded that ileal cells of the guinea pig are superior to other experimental models for characterizing the ileal bile acid carrier, because they allow us to determine initial rates of uptake and have a very efficient energetic coupling.  相似文献   

3.
The relationship of bile acid and cholesterol excretion to changes in plasma cholesterol during pregnancy were studied in guinea pigs. Plasma cholesterol level increased in the first trimester of pregnancy, reached to a peak during the second trimester and decreased in the third trimester reaching the lowest level at one week prior to parturition. Cholesterol level returned to the control level after parturition. Plasma triglyceride level followed a similar trend attaining peak values at second trimester and gradually returned to the control level at the third trimester of pregnancy. Bile acid and total sterol excretion were significantly higher in guinea pigs during the last phase of pregnancy while they remained unchanged during early stage of pregnancy.  相似文献   

4.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

5.
6.
A procedure for the purification of the enzyme bile acid:CoA ligase from guinea pig liver microsomes was developed. Activity toward chenodeoxycholate, cholate, deoxycholate, and lithocholate co-purified suggesting that a single enzyme form catalyzes the activation of all four bile acids. Activity toward lithocholate could not be accurately assayed during the earlier stages of purification due to a protein which interfered with the assay. The purified ligase had a specific activity that was 333-fold enriched relative to the microsomal cell fraction. The purification procedure successfully removed several enzymes that could potentially interfere with assay procedures for ligase activity, i.e. ATPase, AMPase, inorganic pyrophosphatase, and bile acid-CoA thiolase. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified ligase gave a single band of approximately 63,000 Mr. A molecular size of 116,000 +/- 4,000 daltons was obtained by radiation inactivation analysis of the ligase in its native microsomal environment, suggesting that the functional unit of the ligase is a dimer. The purified enzyme was extensively delipidated by adsorption to alumina. The delipidated enzyme was extremely unstable but could be partially stabilized by the addition of phospholipid vesicles or detergent. However, such additions did not enhance enzymatic activity. Kinetic analysis revealed that chenodeoxycholate, cholate, deoxycholate, and lithocholate were all relatively good substrates for the purified enzyme. The trihydroxy bile acid cholate was the least efficient substrate due to its relatively low affinity for the enzyme. Bile acid:CoA ligase could also be solubilized from porcine liver microsomes and purified 180-fold by a modification of the above procedure. The final preparation contains three polypeptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three peptides range in size from 50,000 to 59,000, somewhat smaller than the guinea pig enzyme. The functional size of the porcine enzyme in its native microsomal environment was determined by the technique of radiation inactivation analysis to be 108,000 +/- 5,000 daltons. Thus, the functional form of the porcine enzyme also appears to be a dimer.  相似文献   

7.
8.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

9.
10.
The effects of cholecystectomy upon bile salt kinetics were studied in normal guinea pigs. After cholecystectomy, bile salt pool size decreased, fractional daily turnover rate increased, and the rate of bile salt synthesis was unchanged. These data indicate that an increased frequency of bile salt enterohepatic cycling is sufficient to produce alterations in bile salt kinetics. Abnormalities of bile salt synthesis need not be present in order for a reduction in pool size to occur.  相似文献   

11.
Some bile acid sulfates were synthesized and characterized. The configuration of sulfate groups at C-3, C-7 and C-12 positions was confirmed by Nuclear Magnetic Resonance analysis. These sulfates were utilized in a study of their chemical behaviour in different analytical procedures currently used for serum bile acids determination. Procedures for bile acids extraction from serum with ethanol or Amberlite XAD-2 result in an important loss of the most polar sulfated bile acids. Complete separation of unsulfated from sulfated bile acids on Sephadex LH-20 is not achieved when deconjugation of the most polar bile acid sulfate is slow but does not produce artifacts. Enzymatic determination of bile acids gives positive response with some bile acid sulfates. The current procedures of serum bile acids determination are discussed in consideration of these results.  相似文献   

12.
13.
14.
Bile acid composition of bile from germ-free rabbits   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
The aim of this work was to investigate the effects on bile secretion of flow rate and site of reinfusion of the collected bile to the animal. Thirty-two pigs weighing 50 +/- 3 kg at the beginning of the experiment were fitted with a reentrant fistula in the lower common bile duct and in the upper duodenum. Bile collected from the bile duct was reinfused in four different ways (four groups of 8 animals each): into the duodenum or the lower common bile duct at a constant flow rate using a peristaltic pump, or into the duodenum or the lower common bile duct at a rate mimicking the flow rate of the secretion using an automatic apparatus. Reinfusing the bile into the lower common bile duct at a rate mimicking the secretion rate provided a daily bile acid production about 21% higher than the level recorded with the other three methods. This was mainly due to a higher bile acid concentration since the bile flow was only slightly affected by the treatment.  相似文献   

19.
The biliary excretion of bile salts, lysosomal acid phosphatase, and total proteins were studied in rats under different experimental conditions: during bile salt loss through a bile fistula and after loading with exogenous sodium taurocholate. The experimental models were suitable to demonstrate that variations in the excretion of bile salts were associated with those of acid phosphatase output. During bile salt depletion, acid phosphatase output showed a decrease parallel to that of bile salts. Following a single i.v. injection of sodium taurocholate and during its i.v. infusion, a rapid increase of acid phosphatase excretion in bile was seen. The patterns of enzyme outputs observed after administration of sodium taurocholate suggested a bulk discharge in bile of lysosomal contents. The profiles of protein output were similar to those of acid phosphatase suggesting an association between the secretory mechanism of these bile constituents. In contrast to sodium taurocholate, 4-methylumbelliferone, which also increases canalicular bile flow, did not produce changes in the excretory patterns of the bile components studied. Therefore, the results suggested a bile salt related secretion of acid phosphatase in the rat, which may involve protein secretion in bile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号