首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
A novel kind of culture medium is used for the production Pseudomonas syringae with a high ice-nucleating activity. It is based on a natural substrate, wheat bran, which contains a relatively high proportion of phytate. The double salt of phytic acid is the precursor of a major component of the ice-nucleating site (myo-inositol). Experiments with the purified components show the positive effects on the ice-nucleating activity. The use of the wheat bran medium seems to be specifically efficient on class A bacteria, which is the most active type of P. syringae. We have shown that inorganic phosphate starvation during the preculture of P. syringae leads to higher ice-nucleating activity.  相似文献   

2.
Pseudomonas fluorescens KUIN-1 can cause the freezing of water at relatively warm termperatures (−2.9 to −30°C). Glucose, glycerol, and citric acid were good substrates yielding cells with high ice-nucleating activity. Ammonium salts were good nitrogen sourcfes yielding cells with high ice-nucleating activity. The ice-nucleating activity of KUIN-1 was not affected by pH between pH 5.5 to pH 8.0. The ice-nucleating activity of cells was greatly influenced by heat treatment.  相似文献   

3.
A novel ice-nucleating bacterium, KUIN-4 was isolated from a cherry leaf, which was unsusceptible to frost injury. Strain KUIN-4 was identified as Pseudomonas sp. from its characteristics and taxonomies; the optimum temperature and pH for its growth were 18°C and 4.5, respectively. When strain KUIN-4 was cultured aerobically in CYE medium (pH 4.5) for 48 h at 18°C, the ice-nucleating activities of strain KUIN-4 cells and culture broth (extracellular ice-nucleating matter) after removal of the cell were obtained. The ice-nucleating temperature, T50 (°C), was indicated to be –2.8°C in cell suspensions (4.25 x 107 cell/ml) of strain KUIN-4. Also, it had become apparent that the ice-nucleating activity involved class A, B, and C structures as judged by its freezing difference spectrum in D2O versus H2O. The ice-nucleating activity of this strain as well as other ice-nucleating bacteria was significantly decreased by heat treatment (40°C, 30 min). The ice-nucleating activity from this strain had unique features, which was stable under acidic conditions (pH 3.5–5.0) and was weakly inhibited by denaturants and protein-modifying reagents.  相似文献   

4.
A novel marine ice-nucleating bacterium, KUIN-5, was isolated from a marine algae, Monostroma latissum. Strain KUIN-5 was identified as a Pseudomonas sp. from its characteristics and taxonomies; the optimum temperature and pH for its growth were 25°C and 6.0, respectively. When strain KUIN-5 was aerobically cultured in Carlucci-Pramer medium (pH 6.0) for 50 h at 25°C, the highest ice-nucleating activity of the cells among the media for marine bacteria was obtained, and the ice-nucleating temperature, T50, was indicated to be ? 3.2°C. Also, the optimum concentration of NaCl for the growth in this medium, which was prepared with distilled water instead of seawater, was 2.0% (w/v) and then the ice-nucleating activity was inversely proportional to the NaCl concentration. Moreover, when strain KUIN-5 was cultured in Davis medium under optimum conditions, it produced insoluble polysaccharide (IPS) in the culture. The maximum amount of IPS production by strain KUIN-5 was 84.5 mg/ml of medium under optimum conditions. Therefore, this IPS was isolated and could be identified as cellulose, based on TLC or HPLC of the acid hydrolysate, and GC-MS of the acetylated polyalcohol prepared by periodate oxidation and Smith degradation of this polysaccharide. This is the first report of cellulose production by a marine ice-nucleating bacterium.  相似文献   

5.
Inactivation of the ice-nucleating activity of Pseudomonas fluorescens KUIN-1 by compounds in the leaves from coniferous trees were investigated, and the inactivated material was identified. Intact cells of the strain KUIN-1 and the acetone or methanol extracts of leaves of various coniferous trees were allowed to react for 30 min at 18°C. Antinucleation compounds were obtained from Chamaecyparis taiwanensis. When the acetone extract from the leaves of coniferous trees was added to the cell suspension (about 106 cells/ml) in 50 mM potassium phosphate buffer (pH 7.0), the ice nucleating temperature, T50, was significantly decreased (T50<-5°C). This inhibitor was isolated by using TLC, then identified as hinokitiol based on UV-VIS, IR, and mass spectral data. When intact cells of the strain KUIN-1 were incubated with hinokitiol, limonene, and α-pinene of the principal constituent of the leaves of coniferous trees in 50 mM potassium phosphate buffer (pH 7.0), the ice-nucleating activity decreased, but not in α-terpinene. Furthermore, the ice-nucleating activities from other ice-nucleating bacteria also decreased in the presence of hinokitiol. This inhibition was proportional to the concentration of hinokitinol. The pH and thermal stabilities of the ice-nucleating activity of the cells were changed by the addition of hinokitiol (10 mM).  相似文献   

6.
An ice-nucleating bacterium, KUIN-2, was isolated from carrot leaves. The ice-nucleating bacterium was found in the white colony group. KUIN-2 was identified as Pseudomonas viridiflava from its taxonomic characteristics. When KUIN-2 was cultured aerobically in a medium consisting of Trypticase soy broth (pH 6.0) for 24 h at 18°C, the ice-nucleating activity of KUIN-2 cells was obtained. Ice nucleation was detected at −2.8°C in cell suspensions (1.4 × 108 cells/ml) of KUIN-2. The nucleation frequency of KUIN-2 was greatly inhibited by the addition of urea or N-ethylmaleimide.  相似文献   

7.
An ice-nucleating bacterium, strain KUIN-1, was isolated from the leaves of field beans (Phaseolus vulgaris L.). Strain KUIN-1 was identified as Pseudomonas fluorescens from its taxonomical characteristics. Ice-nucleating activity was obtained when strain KUIN-1 was cultured aerobically in a medium containing Koser citrate broth (pH 7.0) for 24 hr at 18°C. The ice- nucleating activity did not appear until the bacterial cell concentration reached 107 to 108/ml. Nucleation at — 3.0°C was detected in suspensions (1.8 × 109 cells/ml) of cells that had been grown on the medium containing Koser citrate broth. Strain KUIN-1 produced a lower nucleation frequency (i.e. the number of ice nuclei/cell) than did ice-nucleating Pseudomonas syringae No. 31 suspensions, particularly at temperatures above — 5°C. The nucleation frequency of strain KUIN- 1-suspensions was similar to that obtained for an ice-nucleating Erwinia herbicola No. 26 at — 5°C.  相似文献   

8.
Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 μm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.  相似文献   

9.
Inactivation of the ice-nucleating activity of Pseudomonas fluorescens KUIN-1 by compounds in the leaves from coniferous trees were investigated, and the inactivated material was identified. Intact cells of the strain KUIN-1 and the acetone or methanol extracts of leaves of various coniferous trees were allowed to react for 30 min at 18 degrees C. Antinucleation compounds were obtained from Chamaecyparis taiwanensis. When the acetone extract from the leaves of coniferous trees was added to the cell suspension (about 10(6) cells/ml) in 50 mM potassium phosphate buffer (pH 7.0), the ice nucleating temperature, T50, was significantly decreased (T50 < -5 degrees C). This inhibitor was isolated by using TLC, then identified as hinokitiol based on UV-VIS, IR, and mass spectral data. When intact cells of the strain KUIN-1 were incubated with hinokitiol, limonene, and alpha-pinene of the principal constituent of the leaves of coniferous trees in 50 mM potassium phosphate buffer (pH 7.0), the ice-nucleating activity decreased, but not in alpha-terpinene. Furthermore, the ice-nucleating activities from other ice-nucleating bacteria also decreased in the presence of hinokitiol. This inhibition was proportional to the concentration of hinokitinol. The pH and thermal stabilities of the ice-nucleating activity of the cells were changed by the addition of hinokitiol (10 mM).  相似文献   

10.
Pseudomonas syringae is known as a biological ice-nucleating agent. The bacterium has the unusual property of increasing the temperature at which water freezes by a few degrees. However, the ice-nucleating activity (INA) always remains lower for in vitro cultivated cells, than for cells grown in planta. We examined the effects of the hydrophobic environment and of water availability, on the in vitro growth and INA of P. syringae. The hydrophobic environment was modified by addition of fatty acids, vegetable oils or silicone oil to the culture medium. Addition of olive oil (1%), or traces of silicone oil in the culture medium had a positive effect upon the expression of INA. Variations in water activity from 0.990 to 0.988 by addition of sugar beet fibres or sodium chloride in the culture medium were followed by an increase in INA. This study suggested that control of the medium’s water activity must be considered as an important parameter for optimization of INA in P. syringae. Received 16 June 1998/ Accepted in revised form 02 September 1999  相似文献   

11.
The CAT gene which codes for the enzyme chloramphenicol acetyltransferase was found to be ineffective as a reporter gene in cells and tissues of Brassica species. High levels of endogenous CAT activity were found to be widespread among this genus and did not appear to be distributed in a tissue- or cell-specific manner. Moreover, the presence of an inhibitor of CAT activity was discovered in Brassica napus and Brassica juncea. This inhibitor appeared to act selectively on bacterial CAT in transgenic plants. These findings provided an explanation for difficulties experienced in the detection of transgenic CAT activity in B. napus.  相似文献   

12.
During the summer of 1983 in central Alberta, changes in the bacterial population inhabiting the leaves of field beans (Phaseolus vulgaris L.) and canola (Brassica napus L. Altex) were studied to determine if ice-nucleating bacteria were present on these plants. Three colony types (white, yellow, and peach-colored) were found on field beans and canola leaves. Approximately 25% of the isolates from the white colony group, which dominated the population, were ice-nucleating bacteria. No ice-nucleating bacteria were present on canola leaves. Out of a total of 76 ice-nucleating bacteria isolated, 5 representative cultures were characterized in detail and identified as Pseudomonas fluorescens. The fatty acid composition of these cultures was essentially identical to that of typical P. fluorescens cultures and was altered by varying the growth temperature from 10 to 30°C.  相似文献   

13.
Summary The glucose isomerase activity ofStreptomyces haeochromogenes strains 1 and 2 varies considerably with the assay conditions (pH, glucose concentration,etc.). Nine other species of streptomyces were tested under conditions optimal forS.phaeochromogenes 2. The highest enzyme activity was found inS.nigrificans 3014.  相似文献   

14.
We investigated the effect of ingestion of ice-nucleating bacteria on the supercooling capacity and cold hardiness of the Colorado potato beetle (Leptinotarsa decemlineata Say), a freeze-intolerant species that overwinters as adults in shallow, terrestrial burrows. Ingestion of ice-nucleating bacteria (Enterobacter agglomerans, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae), fed on slices of potato tuber, caused an abrupt decrease in supercooling capacity. No change occurred in the supercooling capacity of beetles fed Escherichia coli, as this species lacks ice-nucleating activity. Ingestion rates showed that tubers treated with different species were equally palatable. During diapause induction beetles evacuated food from their guts, but nevertheless retained sufficient ice-nucleating bacteria to diminish supercooling. Beetles fed P. fluorescens and P. putida exhibited reduced supercooling even after an 8-wk exposure to simulated winter conditions. Furthermore, P. fluorescens was isolated 10-wk post-ingestion from diapausing beetles. Our data suggest that ingested bacteria may be retained by insects during entry into diapause and that the cold hardiness of candidate crop pests, such as L. decemlineata, may be reduced by feeding them ice-nucleating bacteria prior to winter diapause.  相似文献   

15.
Summary C. sitophila strain TFB-27441 showed 2–3 times higher lignolytic activity thanPhanerochaete chrysosporium (BKM-F-1767 strain). Lignin had a marked effect on the ligninase activity indicating that some induction or activation mechanism is involved in lignin degradation byC. sitophila.  相似文献   

16.
The ice-nucleating bacterium, Pantoea agglomerans IFO12686, induces the cryoptotective protein (CRP) by cold acclimation at 12°C. The CRP was purified to apparent homogeneity by various chromatographies. We found that the purified CRP was a monomer of approximately 29,000 according to gel filtration chromatography and SDS-PAGE, and was a heat-stable protein. The CRP could protect freeze-labile enzymes, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and isocitrate dehydrogenase (iCDH), against freezing-thawing denaturation. The activity of the CRP was about 3.5×104 times more effective than bovine serum albumin (BSA) and 2×106 times than COR26 from the ice-nucleating bacterium Pseudomonas fluorescens KUIN-1. We confirmed that the CRP was a novel protein, as judged by the a different molecule mass from the already-known cryoprotectants, and has an extremely high cryoprotective activity.  相似文献   

17.
Summary The threonine operon fromEscherichia coli was cloned in plasmid pBR322, subcloned into the shuttle vector pCEM300 and the resulting recombinant plasmid was transferred intoBrevibacterium flavum andCorynebacterium glutamicum. The expression ofE. coli threonine genes in these coryneform bacteria was demonstrated by complementing thethrA andthrB mutations and by assaying homoserine dehydrogenase activity.  相似文献   

18.
Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (–)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at ?4–?6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.  相似文献   

19.
The utility of engineering enzyme activity is expanding with the development of biotechnology. Conventional methods have limited applicability as they require high-throughput screening or three-dimensional structures to direct target residues of activity control. An alternative method uses sequence evolution of natural selection. A repertoire of mutations was selected for fine-tuning enzyme activities to adapt to varying environments during the evolution. Here, we devised a strategy called sequence co-evolutionary analysis to control the efficiency of enzyme reactions (SCANEER), which scans the evolution of protein sequences and direct mutation strategy to improve enzyme activity. We hypothesized that amino acid pairs for various enzyme activity were encoded in the evolutionary history of protein sequences, whereas loss-of-function mutations were avoided since those are depleted during the evolution. SCANEER successfully predicted the enzyme activities of beta-lactamase and aminoglycoside 3′-phosphotransferase. SCANEER was further experimentally validated to control the activities of three different enzymes of great interest in chemical production: cis-aconitate decarboxylase, α-ketoglutaric semialdehyde dehydrogenase, and inositol oxygenase. Activity-enhancing mutations that improve substrate-binding affinity or turnover rate were found at sites distal from known active sites or ligand-binding pockets. We provide SCANEER to control desired enzyme activity through a user-friendly webserver.  相似文献   

20.
Regulation of Escherichia coli phosphofructokinase in situ   总被引:15,自引:0,他引:15  
The activity of E. coli phosphofructokinase in situ has been studied in cells permeabilized to its substrates, products and effectors by a toluene-freezing treatment. The in situ enzyme exhibits moderate cooperativity in respect to F6P (nH up to 2.0), rather low affinity for ATP (with Km up to 1 mM when saturated with F6P), activation by ADP, and inhibition, within the physiological range of concentrations, by high ATP and phosphoenolpyruvate. This behaviour of the enzyme in situ at concentrations of the effector metabolites as those reported in intact cells in glycolytic and gluconeogenic conditions could account for the changes of phosphofructokinase activity needed for metabolic regulation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号