首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epitheliumin vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10−12 M solutions.  相似文献   

2.
The adult newt retina explanted together with the posterior eye wall and cultivated for a short time in a serum-free medium was tested as an experimental model by several criteria, including the expression of protein markers of the main retinal cell types. Some differences in the expression of specific photoreceptor, interneuron, and glial cell proteins as well as the localization of acetylcholinesterase activity were found during in vitro cultivation. Using this model, preliminary tests of new cell adhesion glycoproteins from the bovine retina and pigment epithelium were conducted, and the role of pigment epithelial cell proteins in improving cell viability in the cultivated newt retina was revealed. Moreover, the fraction of basic adhesion proteins from the bovine pigment epithelium improved the survival potential of the macroglial (Muller) cell population, compared to that in the control.  相似文献   

3.
Based on studies of wolffian lens regeneration in the newt, in which the lens can be regenerated from the iris pigmented epithelium, we have shown by cell culture studies that the capacity of lens transdifferentiation is not limited to the newt cells, but widely conserved in pigmented epithelial cells (PECs) of chick and quail embryos and even of human fetuses. Recently, we have established a unique in vitro model system of chick embryonic PECs. In this culture system we are able to control each step of transdifferentiation from PECs into lens cells by regulating culture conditions and to produce a homogeneous cell population with potential for synchronous differentiation into either lens or pigment cell phenotype. These multipotent (at least bipotent) cells showed cellular characteristics resembling neoplastic cells in many ways. They did not express both lens and pigment cell specific genes analyzed so far, except δ-crystallin gene, which is expressed in developing lens of chick embryos. It has been proved by application of cell culture procedures of the system that PECs dissociated from fully-grown human eyes readily transdifferentiated into lens phenotypes in the manner observed in chick embryo PECs. In addition, we could predict that molecules detected in either cell surface or intercellular space stabilized the differentiated state of PECs in the newt and that the loss of these molecules might be one of the key steps of lens regeneration from the iris epithelium.  相似文献   

4.
To understand why the retinal pigment epithelium (RPE) has different potentials for neural differentiation in lower and higher vertebrates, the RPEs of adult newts and rats were compared under similar in vitro cultivation conditions. The RPEs of both animal species were organotypically cultivated within the posterior eye wall under constant rotation in the serum medium free of growth factors. Comparison of the cell morphology, proliferation, and expression of pan-neural markers demonstrated that the RPE cells of adult newts and rats under similar in vitro conditions displayed both similarities and differemces. They were able to synthesize DNA but rarely divided mitotically. In addition, part of the RPE cells of both the newt and the rat were dislodged from the layer, migrated, and acquired a macrophage phenotype. However, the majority of the cells retained the initial morphology and remained within the layer. In several cases, these cells displayed the initial characteristics of neural differentiation, namely, expression of pan-neural proteins. The difference between the newt and rat RPE cells was in the ability of the former to generate in vitro an additional row of dedifferentiated NF-200-positive cells, characteristic of in vivo newt retinal regeneration. These data demonstrate that the RPE cells of the adult newt and rat retain the potential of manifesting neural cell traits; however, more advanced changes towards differentiation are characteristic of only the newt RPE.  相似文献   

5.
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented "neuron-like cells" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.  相似文献   

6.
The salt extract of the nuclear fraction of a homogenate of the retinal pigment epithelium from 12-15 day old chick embryos inhibits selectively the proliferative activity in the retinal pigment epithelium of 3-5 day old embryos. The inhibiting effect of the nuclear factor is found within 20 h after its introduction into the egg. The nuclear extract from the pigment epithelium does not affect the level of proliferation in retina and lens anterior epithelium.  相似文献   

7.
In our work the new proteins likely belonged to the microenvironment of pigmented epithelium cells and retinal neurons in mammalian eye were studied. We attempted to understand the role of these proteins in the maintenance of normal morphological and functional state of these eye tissues. Earlier for the first time we identified the adhesion molecules with physico-chemical and biological properties much different from other known cell adhesion molecules of bovine eye. Probably, they represent one family of low molecular weigh, highly glicosylated proteins, that express biological activity in extremely low doses--10(-10) mg/ml. The homogeneity of studying proteins is confirmed by HPLC and SDS-electrophoresis in PAAG. It is shown also that these proteins are N-glycosylated, because they contain mannose and N-acetilglucosamine residues. They demonstrate as well a high calcium-binding activity, with Kd corresponded to 10(-4)-10(-6) mg/ml. For a study of the biological effect of these glycoproteins in extremely low doses, a new experimental model was proposed and developed. It was the cultivation in vitro of the posterior part of the eye obtained from the newt Pleurodeles waltl. In short-time culture system it was demonstrated that the studied glycoproteins could stabilize pigment epithelium cell differentiation and cellular interactions in the neural retina in vitro. In addition, glycoproteins, obtained from the pigmented epithelium of bovine eye could decrease the rate of bipolar cell apoptosis in the neural retina. Therefore, the novel adhesion glycoproteins, expressing their biological activity in extremely low doses, pretend to be the regulatory molecules with vivid gomeostatic effects necessary for the delicate adjustment of cell behavior action and function in sensory tissues.  相似文献   

8.
Summary Myeloid bodies are believed to be differentiated areas of smooth endoplasmic reticulum membranes, and they are found within the retinal pigment epithelium in a number of lower vertebrates. Previous studies demonstrated a correlation between phagocytosis of outer segment disc membranes and myeloid body numbers in the retinal pigment epithelium of the newt. To test the hypothesis that myeloid bodies are directly involved in outer segment lipid metabolism and to further characterize the origin and functional significance of these organelles, we examined the effects on myeloid bodies of eliminating the source of outer segment membrane lipids (neural retina removal) and of the subsequent return of outer segments (retinal regeneration) in the newt Notophthalmus viridescens. Light- and electron-microscopic analysis demonstrated that myeloid bodies disappeared from the pigment epithelium within six days of neural retina removal. By week 6 of regeneration, rudimentary photoreceptor outer segments were present but myeloid bodies were still absent. However, at this time, the smooth endoplasmic reticulum in some areas of the retinal pigment epithelial cells had become flattened, giving rise to small (0.5 m long), two-to-four layer-thick lamellar units, which are myeloid body precursors. Small myeloid bodies were first observed one week later at week 7 of retinal regeneration. This study revealed that newt myeloid bodies are specialized areas of smooth endoplasmic reticulum. It also showed that a contact between functional photoreceptors and the retinal pigment epithelium is essential to the presence of myeloid bodies in the epithelial cells.  相似文献   

9.
Degradation of rod outer segment proteins by cathepsin D.   总被引:1,自引:0,他引:1  
The degradation of proteins of the rod outer segment (ROS) fraction by partially purified cathepsin D [EC 3.4.23.5] from the retinal pigment epithelium was studied. The ROS fraction, prepared from bovine eyes by sucrose density gradient centrifugation, had little cathepsin D activity. Partially purified cathepsin D, obtained from crude extract of bovine retinal pigment epithelium using bovine serum albumin as a substrate, hydrolyzed the porteine of the ROS fraction. The rate of degradation of ROS proteins was proportional to both the enzyme concentration and the incubation time. With ROS proteins as substrate, the optimal pH of cathepsin D was about 3.5. The degradation of ROS proteins was inhibited by pepstatin.  相似文献   

10.
N G Fedtsova 《Ontogenez》1991,22(3):237-244
Undissociated tissue explants of the retina and retinal pigment epithelium (RPE) of 3,5-, 4-, 5- and 8-day-old chick embryos were cultured in vitro. After 7 days in culture, lentoids were observed in explants of either retina or RPE from 3,5-, 4- and 5-day-old embryos. As demonstrated by immunohistochemistry, these lentoids contained specific chick lens proteins (alpha-, beta- and delta-crystallins). No crystallin-containing cells were found in eye tissue explants from 8-day-old embryos. However, when 5-bromo-deoxyuridine (25 microM) was introduced into the medium at the beginning of culturing (for 12 h), large eosinophilic cells containing alpha-, beta- and delta-crystallins were detected in retinal explants of the 8-day old embryos. Thus, retina and RPE of 3,5-5-day-old chick embryos are capable of lens differentiation after explantation in vitro without dissociation into individual cells. This capacity is lost during development.  相似文献   

11.
Gel filtration studies demonstrate that retinol receptors of chick retinal and pigment epithelial cytosols are (1) of very similar nature (2) of small molecular size (about 18000 daltons) and are different in character from serum proteins. Citral inhibits the binding of [3H]retinol to the retinal 2 S receptor. Retinol acetate competes with retinol for binding to 2 S receptor in both retina and pigment epithelium whereas retinol palmitate is an effective competitor only in the pigment epithelium. Dithiothreitol maximizes 2 S binding in retina and pigment epithelial cytosol; its absence does not lead to receptor aggregation however. A limited number of high affinity binding sites (2 S receptor) appear to be present in retina and pigment epithelium. A 5 S binding species is also present in pigment epithelium; it is similar in character to [3H]retinol binding in serum and may arise from serum contamination of the pigment epithelial preparation. Binding affinity in retina is high with possibly two classes of retinol binding sites present of KD about 1 - 10(-9) and 4 - 10(-8).  相似文献   

12.
One of the earliest events in vertebrate eye development is the establishment of the pigmented epithelium and neural retina. These fundamentally different tissues derive from the invaginated optic vesicle, or optic cup. Even after achieving a fairly advanced state of differentiation, the pigmented epithelium exhibits the same potential as the optic cup in that it can "transdifferentiate" into neural retina. C. M. Park and M. J. Hollenberg (Dev. Biol. 134, 201-205, 1989) discovered that administration of basic fibroblast growth factor, coupled with retinal removal, could trigger this transformation in vivo. We have developed a quantitative in vitro assay to study the role(s) of the fibroblast growth factor (FGF) family in this phenomenon and more generally in early retinal development. We found that several aspects of the process, including inhibition of pigmented epithelium differentiation, proliferation, and conversion to a retinal fate, were not strictly correlated. Both acidic and basic FGFs were found to potentiate all aspects of the process, with acidic FGF being 4 to 20 times more potent than basic FGF for inhibition of pigmentation and induction of retinal antigens. Depending upon its concentration, acidic FGF induced from 40% to 80% of the cells in the explants to produce antigens normally expressed by retinal ganglion cells, the first cell type to be generated in retinal development. Expression of such a ganglion cell marker could be directly stimulated in non-dividing cells as well as in dividing cells, indicating that conversion from the pigmented epithelial to retinal fate did not require cell division. These data suggest that acidic FGF, or a related molecule, may function in establishment of retinal fate from the optic cup. This effect may be directly or indirectly mediated by induction of retinal ganglion cell fate among multipotent progenitor cells.  相似文献   

13.
The proliferative activity of the pigment epithelium cells transplanted in the lens-less eyes was studied in the adult crested newt. The cells of transplanted pigment epithelium incorporated 3H-thymidine injected intraperitoneally. Within 10 days after explantation, the index of labelled nuclei equaled 27.8-34.0% and within 20 days the number of labelled cells doubled. By that time the proliferating transplant cells were depigmented and formed 2-3 rows of cells of retinal rudiment. In response to the removal of lens from the of recipients eyes their regeneration proceeded. Irrespective of participation (dorsal iris) or nonparticipation in lens regeneration (ventral iris), the index of labelled nuclei in these regions of iris had similar values. The eyes of recipients were also characterized by a local proliferation of pigment epithelium cells in the zones of retinal detachment. In these zones the index of labelled nuclei in the pigment epithelium equaled 11.0-31.3%.  相似文献   

14.
The retinal pigment epithelium is uniquely suited to gene therapy that uses lipid-mediated DNA transfer due to its high phagocytic activity in situ. We compared the relative efficacy of phagocytosis on the uptake of labeled plasmid vectors by retinal pigment epithelial and ciliary epithelial cells in vitro. Relative levels of endocytosis were then compared with the efficiency of marker transgene expression in these cells. Human retinal pigment epithelial and ciliary epithelial cells from a single donor were isolated and expanded in vitro. Polyplex-mediated transfections were performed using a rhodamine-labeled expression vector for green fluorescent protein. Rhodamine-labeled endosomes were examined by fluorescence microscopy at different time points. Rhodamine labeling and green fluorescent protein expression were analyzed by flow cytometry 48 h after transfection. These gene transfer studies showed that expression of transgenes does occur in both human retinal pigment epithelial and ciliary epithelial cells in vitro. Endocytosis of labeled plasmid vectors occurs at a significantly higher number and density in retinal pigment epithelial cells than in ciliary epithelial cells (P < 0.04). However, the efficiency of marker transgene expression is similar in the two cell types. These studies demonstrate that the higher intrinsic phagocytic activity does not enhance the efficacy of transgene expression in retinal pigment epithelial cells in vitro. Both human retinal pigment epithelial and ciliary epithelial cells are competent recipients for lipid-mediated gene transfer, and transgene expression occurs at similar levels in both cell types.  相似文献   

15.
The Polarity of the Retinal Pigment Epithelium   总被引:1,自引:0,他引:1  
The diversity of epithelia in the body permits a multitude of organ-specific functions. One of the foremost examples of this is the retinal pigment epithelium. Located between the photoreceptors of the retina and their principal blood supply, the choriocapillaris, the retinal pigment epithelium is critical for the survival and function of retinal photoreceptors. To serve this purpose, the retinal pigment epithelium cell has adapted the classic Golgi-to-cell-surface targeting pathways first described in such prototypic epithelial cell models as the Madin-Darby canine kidney cell, to arrive at a unique distribution of membrane and secreted proteins. More recent data suggest that the retinal pigment epithelium also takes advantage of its inherent asymmetry to augment the classical pathways of Golgi-to-cell-surface traffic. As retinal pigment epithelium transplants and gene therapy represent potential cures for retinal degenerative diseases, understanding the basis of the unique polarity properties of retinal pigment epithelium cells will be a critical issue for the development of future therapies.  相似文献   

16.
Muscarinic receptors are the predominant cholinergic receptors in the central and peripheral nervous systems. Recently, activation of muscarinic receptors was found to elicit pigment granule dispersion in retinal pigment epithelium isolated from bluegill fish. Pigment granule movement in retinal pigment epithelium is a light-adaptive mechanism in fish. In the present study, we used pharmacological and molecular approaches to identify the muscarinic receptor subtype and the intracellular signaling pathway involved in the pigment granule dispersion in retinal pigment epithelium. Of the muscarinic receptor subtype-specific antagonists used, only antagonists specific for M1 and M3 muscarinic receptors were found to block carbamyl choline (carbachol)-induced pigment granule dispersion. A phospholipase C inhibitor also blocked carbachol-induced pigment granule dispersion, and a similar result was obtained when retinal pigment epithelium was incubated with an inositol trisphosphate receptor inhibitor. We isolated M2 and M5 receptor genes from bluegill and studied their expression. Only M5 was found to be expressed in retinal pigment epithelium. Taken together, pharmacological and molecular evidence suggest that activation of an odd subtype of muscarinic receptor, possibly M5, on fish retinal pigment epithelium induces pigment granule dispersion.  相似文献   

17.
The mechanisms of adhesion of the retinal and pigment epithelium cells, as well of cell interaction within each of these tissues were studied during development. It was shown by means of separation of retina from pigment epithelium in different dissociation media that the adhesion of these tissues in 5-6 day old chick embryos is realized via a Ca2+-independent mechanism. The adhesion of these tissues decreases between days 7 and 16. Starting from day 16, both Ca2+-independent and Ca2+-dependent mechanisms are involved in the interaction of the retinal and pigment epithelium cells. By measuring the output of single cells into the suspension after the treatment of retina and pigment epithelium with different dissociating agents, it was shown that from the 5th day of incubation on the adhesion of pigment epithelium cells is mediated by Ca2+-dependent mechanism. In the retina three types of cells were found: interacting via Ca2+-dependent mechanism only, Ca2+-independent mechanism only, and both the mechanisms. In the course of differentiation, the numbers of the population of cells interacting only via Ca2+-dependent mechanism increase, while those of cells interacting via Ca2+-independent mechanism decrease. It is suggested that at each developmental stage those retinal cell possess Ca2+-dependent mechanism of adhesion which are closest to the definitive state.  相似文献   

18.
Neurochemical Characteristics of Myelin-like Structure in the Chick Retina   总被引:1,自引:1,他引:0  
Abstract: Certain characteristics of myelin-like structures in the chick retina were examined morphologically and biochemically. Developmental changes of 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) in the chick retina and optic nerve were examined. The measurable activity in the retina was first detected at 16 days of incubation and thereafter, it increased rapidly until 4 weeks post-hatching. By contrast, CNPase activity in the optic nerve reached the maximum level at 4 days post-hatching and maintained a constant level thereafter. The purifed myelin fraction from the chick retina showed higher activity of CNPase, whereas its activity in the retinal homogenate was very low. Hence, it was considered that the myelin fraction from the chick retina is similar to that of CNS myelin with respect to CNPase. Protein profiles of the purified myelin fractions isolated from the chick optic tectum, optic nerve, retina and sciatic nerve were analysed by SDS-polyacrylamide gel elec-trophoresis. Myelin fractions from the chick optic tectum and optic nerve contained basic protein (BP) and Folch-Lees proteolipid protein (PLP). Myelin fraction from the chick sciatic nerve contained BP, P2 and two glycoproteins (PO and 23K). In contrast, retinal myelin fraction contained only BP. PLP, PO, 23K and P2 proteins were definitely undetectable. Electron micrographs revealed that some axons in the optic nerve fiber layer of the chick retina were wrapped by a spiral-structured myelin-like sheath, which showed some differences from those of CNS and PNS myelin sheaths. It was suggested that the origin of the myelin-like structure in the chick retina is other than from oligodendroglia or Schwann cells.  相似文献   

19.
The retinal pigment epithelium (RPE) is a single cell layer adjacent to the rod and cone photoreceptors that plays key roles in retinal physiology and the biochemistry of vision. RPE cells were isolated from normal adult human donor eyes, subcellular fractions were prepared, and proteins were fractionated by electrophoresis. Following in-gel proteolysis, proteins were identified by peptide sequencing using liquid chromatography tandem electrospray mass spectrometry and/or by peptide mass mapping using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Preliminary analyses have identified 278 proteins and provide a starting point for building a database of the human RPE proteome.  相似文献   

20.
Gel filtration studies demonstrate that retinol receptors of chick retinal and pigment epithelial cytosols are (1) of very similar nature (2) of small molecular size (about 18 000 daltons) and are different in character from serum proteins. Citral inhibits the binding of [3H] retinol to the retinal 2 S receptor. Retinol acetate competes with retinol for binding to 2 S receptor in both retina and pigment epithelium whereas retinol palmitate is an effective competitor only in the pigment epithelium. Dithiothreitol maximizes 2 S binding in retina and pigment epithelial cytosol; its absence does not lead to receptor aggregation however. A limited number of high affinity binding sites (2 S receptor) appear to be present in retina and pigment epithelium. A 5 S binding species is also present in pigment epithelium; it is similar in character to [3H] retinol binding in serum and may arise from serum contamination of the pigment epithelial preparation. Binding affinity in retina is high with possibly two classes of retinol binding sites present of KD about 1·10?9 and 4·10?8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号