首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Staphylococcus aureus are Gram-positive bacteria and cause diverse serious diseases in humans and animals through the production of toxins. The production of toxins is regulated by quorum sensing mechanisms, where proteins such as RNAIII activating protein (RAP) are secreted by the bacteria and induce virulence. Antibodies to RAP have been shown to protect mice from infection, but the molecular structure of RAP was not known and hindered vaccine development. To characterize RAP, recombinant protein was made and tested for its ability to induce genes important for pathogenesis (agr). In addition, monoclonal antibodies were produced to identify its cellular localization. Results shown here indicate that RAP is a 277-aa protein that is an ortholog of the ribosomal protein L2. Like the native molecule, recombinant RAP activates the production of RNAIII (encoded by agr). Using RAP specific monoclonal antibodies we demonstrate that RAP is continuously secreted and while RAP is expressed also in other bacteria (like Staphylococcus epidermidis, Staphylococcus xylosus and Escherichia coli), it is secreted to the culture medium only by S. aureus. Our results show that the ribosomal protein L2 has an extraribosomal function and that when secreted RAP acts as an autoinducer of virulence to regulate S. aureus pathogenesis.  相似文献   

7.
8.
Staphylococcus aureus undergoes a density-dependent conversion in phenotype from tissue-adhering to tissue-damaging and phagocyte-evading that is mediated in part by the quorum-sensing operon, agr, and its effector, RNAIII. Contributions of host factors to this mechanism for regulating virulence have not been studied. We hypothesized that fibrinogen, as a component of the inflammatory response, could create spatially constrained microenvironments around bacteria that increase density independently of bacterial numbers and thus potentiate quorum-sensing-dependent virulence gene expression. Here we show that transient fibrinogen depletion significantly reduces the bacterial burden and the consequential morbidity and mortality during experimental infection with wild-type S. aureus, but not with bacteria that lack expression of the quorum-sensing operon, agr. In addition, it inhibits in vivo activation of the promoter for the agr effector, RNAIII, and downstream targets of RNAIII, including alpha hemolysin and capsule production. Moreover, both in vitro and in vivo, the mechanism for promoting this phenotypic switch in virulence involves clumping of the bacteria, demonstrating that S. aureus responds to fibrinogen-mediated bacterial clumping by enhancing density-dependent virulence gene expression. These data demonstrate that down-modulation of specific inflammatory components of the host that augment bacterial quorum sensing can be a strategy for enhancing host defense against infection.  相似文献   

9.
Cell-density-dependent gene regulation by quorum-sensing systems has a crucial function in bacterial physiology and pathogenesis. We demonstrate here that the Staphylococcus aureus agr quorum-sensing regulon is divided into (1) control of metabolism and PSM cytolysin genes, which occurs independently of the small regulatory RNA RNAIII, and (2) RNAIII-dependent control of additional virulence genes. Remarkably, PSM expression was regulated by direct binding of the AgrA response regulator. Our findings suggest that quorum-sensing regulation of PSMs was established before wide-ranging control of virulence was added to the agr regulon, which likely occurred by development of the RNAIII-encoding region around the gene encoding the PSM delta-toxin. Moreover, the agr regulon in the community-associated methicillin-resistant S. aureus MW2 considerably differed from that previously determined using laboratory strains. By establishing a two-level model of quorum-sensing target gene regulation in S. aureus, our study gives important insight into the evolution of virulence control in this leading human pathogen.  相似文献   

10.
Subgenomic DNA microarrays were employed to evaluate the expression of the accessory gene regulator (agr locus) as well as multiple virulence-associated genes in Staphylococcus aureus. Gene expression was examined during growth of S. aureus in vitro in standard laboratory medium and rabbit serum and in vivo in subcutaneous chambers implanted in either nonimmune rabbits or rabbits immunized with staphylococcal enterotoxin B. Expression of RNAIII, the effector molecule of the agr locus, was dramatically repressed in serum and in vivo, despite the increased expression of secreted virulence factors sufficient to cause toxic shock syndrome (TSS) in the animals. Statistical analysis and clustering of virulence genes based on their expression profiles in the various experimental conditions demonstrated no positive correlation between the expression of agr and any staphylococcal virulence factors examined. Disruption of the agr locus had only a minimal effect on the expression in vivo of the virulence factors examined. An effect of immunization on the expression of agr and virulence factors was also observed. These results suggest that agr activation is not necessary for development of staphylococcal TSS and that regulatory circuits responding to the in vivo environment override agr activity.  相似文献   

11.
12.
13.
14.
15.
Staphylococcus aureus can cause disease through the production of toxins. Toxin production is autoinduced by the protein RNAIII-activating protein (RAP) and by the autoinducing peptide (AIP), and is inhibited by RNAIII-inhibiting peptide (RIP) and by inhibitory AIPs. RAP has been shown to be a useful vaccine target site, and RIP and inhibitory AIPs as therapeutic molecules to prevent and suppress S. aureus infections. Development of therapeutic strategies based on these molecules has been hindered by a lack of knowledge of the molecular mechanisms by which they activate or inhibit virulence. Here, we show that RAP specifically induces the phosphorylation of a novel 21-kDa protein, whereas RIP inhibits its phosphorylation. This protein was termed target of RAP (TRAP). The synthesis of the virulence regulatory molecule, RNAIII, is not activated by RAP in the trap mutant strain, suggesting that RAP activates RNAIII synthesis via TRAP. Phosphoamino acid analysis shows that TRAP is histidine-phosphorylated, suggesting that TRAP may be a sensor of RAP. AIPs up-regulate the synthesis of RNAIII also in trap mutant strains, suggesting that TRAP and AIPs activate RNAIII synthesis via distinct signal transduction pathways. Furthermore, TRAP phosphorylation is down-regulated in the presence of AIP, suggesting that a network of signal transduction pathways regulate S. aureus pathogenesis.  相似文献   

16.
Yang G  Cheng H  Liu C  Xue Y  Gao Y  Liu N  Gao B  Wang D  Li S  Shen B  Shao N 《Peptides》2003,24(11):1823-1828
Staphylococcus aureus cause many diseases by producing toxins, whose synthesis is regulated by quorum-sensing mechanisms. S. aureus secretes a protein termed RNAIII activating protein (RAP) which autoinduces toxin production via the phosphorylation of is target protein TRAP. Mice vaccinated with RAP were protected from S. aureus infection, suggesting that RAP is an useful target for selecting potential therapeutic molecules to inhibit S. aureus pathogenesis. We show here that RAP (native and recombinant) was used to select RAP-binding peptides (RBPs) from a random 12-mer phage-displayed peptide library. Two RBPs were shown to inhibit RNAIII production in vitro (used a marker for pathogenesis). The peptide WPFAHWPWQYPR, which had the strongest inhibitory activity, was chemically synthesized and also expressed in Escherichia coli as a GST-fusion. Both synthetic peptide and GST-fusion peptide decreased RNAIII levels in a dose-dependent manner. The GST-fusion peptide was also shown to protect mice from a S. aureus infection in vivo (tested in a murine cutaneous S. aureus infection model). Our results suggest the potential use of RAP-binding proteins in treating clinical S. aureus infections.  相似文献   

17.
18.
With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.  相似文献   

19.
The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号