首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 × 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial–lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

2.
A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.  相似文献   

3.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

4.
Although the identification and characterization of limb load asymmetries during quiet standing has not received much research attention, they may greatly extend our understanding of the upright stance stability control. It seems that the limb load asymmetry factor may serve as a veridical measure of postural stability and thus it can be used for early diagnostic of the age-related decline in balance control. The effects of ageing and of vision on limb load asymmetry (LLA) during quiet stance were studied in 43 healthy subjects (22 elderly, mean age 72.3+/-4.0 yr, and 21 young, mean age 23.9+/-4.8 yr). Postural sway and body weight distribution were recorded while the subject was standing on two adjacent force platforms during two 120 s trials: one trial was performed with the eyes open (EO), while the other trial was with the eyes closed (EC). The results indicate that LLA was greater in the old adults when compared with the young control subjects. The LLA values were correlated with the postural sway magnitudes especially in the anteroposterior direction. Eyes closure which destabilized posture resulted in a significant increase of body weight distribution asymmetry in the elderly but not in the young persons. The limb load difference between EO and EC conditions showed a significantly greater effect of vision on LLA in the elderly compared to the young subjects. The observed differences in the LLA may be attributed to the decline of postural stability control in the elderly. Ageing results in the progressive decline of postural control and usually the nervous system requires more time to complete a balance recovery action. To compensate for such a deficiency, different compensatory strategies are developed. One of them, as evidenced in our study, is preparatory limb unload strategy (a stance asymmetry strategy) which could significantly shorten reaction time in balance recovery.  相似文献   

5.
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants'' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.  相似文献   

6.
Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.  相似文献   

7.
Maintenance of human upright stance requires the acquisition and integration of sensory inputs. Conventional measures of sway have had success in identifying age- and some disease-related changes, but remain unable to address the complexities and dynamics associated with postural control. We investigated the effects of vision, surface compliance, age, and gender on the spectral content of center of pressure (COP) time series. Sixteen healthy young (age 18-24) and older participants (age 55-65) performed trials of quiet, upright stance under different vision (eyes open vs. closed) and surface (hard vs. compliant) conditions. Spectral analyses were conducted to describe COP mean normalized power in discretized bands. Effects of the two sensory modalities and age were distinct in the antero-posterior and medio-lateral directions, and a reorganization of spectral content was evident with increasing task difficulty (eyes open vs. closed and hard vs. compliant surface) and among older adults. These results indicate that vision and surface compliance are predominantly associated with responses from musculature associated with antero-posterior and medio-lateral directions of sway, respectively. Finally, distinguishing between the contributions of different afferent systems to the postural control system using the spectral content of sway bi-directionally may help in diagnosing individuals with balance impairments.  相似文献   

8.
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control.  相似文献   

9.
The aim of this study was to characterize daily fluctuations in postural control, gait and plantar cutaneous sensitivity in institutionalized older adults. Twenty-five older adults (>85 years old) living in a nursing home were recruited. Postural, gait and plantar cutaneous sensitivity parameters were collected at the following times: 8:00, 11:00, 14:00 and 17:00. Statistics were first calculated with the data from the whole group of the participants. A hierarchical cluster analysis was performed as a second step in order to determine if there was more than one pattern in the daily fluctuations of gait, postural control and plantar cutaneous sensitivity. When considering data from the whole group, results showed that postural control deteriorated from morning to the early afternoon and that gait improved from early to late morning. Daily fluctuations of plantar cutaneous sensitivity showed a decrease in tactile acuity in the afternoon. For most gait, postural control and plantar cutaneous sensitivity parameters, the hierarchical cluster analysis showed that there were three subgroups within the whole group of participants who had similar fluctuation patterns. Participants with the best tactile acuity, postural control and gait displayed relatively constant patterns without a period of increased risk of falling. By contrast, participants who presented a poor tactile acuity with a less efficient postural control and gait had greater daily fluctuations of plantar cutaneous sensitivity, with a marked decline of postural control and gait in the afternoon. In spite of a strong relationship between plantar cutaneous sensitivity and gait/postural control, the decline in postural control and gait observed in the afternoon could not be related to plantar sensation. It might rather relate to a cognitive function which is known to peak early in human circadian rhythms and to have a greater contribution in postural control regulation in the elderly than in young healthy subjects.  相似文献   

10.
Textured insoles may enhance sensory input on the plantar surfaces of the feet, thereby influencing neuromuscular function. The aim of this study was to investigate whether textured surfaces alter postural stability and lower limb muscle activity during quiet bipedal standing balance with eyes open. Anterior–posterior (AP) and mediolateral (ML) sway variables and the intensity of electromyographic (EMG) activity in eight dominant lower limb muscles were collected synchronously over 30 s in 24 young adults under three randomised conditions: control surface (C), texture 1 (T1) and texture 2 (T2). Repeated measures ANOVA showed that the textured surfaces did not significantly affect AP or ML postural sway in comparison to the control condition (p > 0.05). Neither did the textured surfaces significantly alter EMG activity in the lower limbs (p > 0.05). Under the specific conditions of this study, texture did not affect either postural sway or lower limb muscle activity in static bipedal standing. The results of this study point to three areas of further work including the effect of textured surfaces on postural stability and lower limb muscle activity: (i) in young healthy adults under more vigorous dynamic balance tests, (ii) post-fatigue, and (iii) in older adults presenting age-related deterioration.  相似文献   

11.
The present study investigates the mechanisms underlying changes in postural strategy that occur to compensate for mechanical ankle joint restrictions induced by wearing ski-boots during postural exercises. Fourteen experienced skiers were asked to stand as still as possible in a stable (STA) posture and in 2 postures with instability in the medio/lateral and antero/posterior (ML and AP postures) direction. Postural tasks were performed with eyes open or closed and while wearing or not wearing ski-boots. The electromyographic (EMG) activity of representative lower limb muscles and positions of centre-of-foot pressure (COP) were recorded and analyzed. Our results illustrated enhanced postural performances with ski-boots in the STA posture, whereas postural performances remained unchanged when wearing ski-boots in the ML and AP postures. Analysis of COP sways in the frequency domain did not illustrate any modification in the contribution of different neuronal loops when the study subjects wore ski-boots. EMG showed that the mechanical effects of wearing ski-boots were compensated by changes in postural strategy through the reorganization of muscle coordination, made possible by inherent redundancies in the human body. The preservation of postural performances, despite restrictions of ankle degrees-of-freedom induced by ski-boots, emphasizes the subjects’ capacity to exploit the additional support provided by ski-boots by adequately adjusting muscle coordination to control posture in different balance conditions.  相似文献   

12.
Smetanin  B. N.  Popov  K. E.  Kozhina  G. V. 《Neurophysiology》2004,36(1):58-64
We studied physiological mechanisms of vision-related stabilization of the vertical posture in humans using a stabilographic technique; spontaneous deviations of the projection of the center of gravity during quiet stance and magnitudes of the postural response to vibratory stimulation of proprioceptors of the lower leg muscles under varied conditions of visual control were measured. The stability of quiet stance, as estimated according to the root mean square value of the sagittal component of the stabilogram, was the best with eyes open. Vibration-induced postural responses were the smallest also under these conditions. Spontaneous postural sway and the amplitude of response to vibratory stimulation increased when only a central sector of visual field (20 ang. deg) was preserved and, especially, under conditions of closed eyes and horizontal inversion of visual perception using prismatic spectacles. Parallel changes in the quantitative stabilographic indices and amplitude of vibration-induced postural responses show that the intensity of the latter is probably determined by the background stiffness of the musculoskeletal system. We tried to estimate separately the contributions of the stiffness factor, on the one hand, and specific visual influences, on the other hand, by testing the parameters of quiet stance and postural responses under conditions of standing while lightly touching a support with the index finger. We found that the influence of the conditions of visual control on the stability of quiet stance while touching the support was eliminated. At the same time, the magnitude of postural responses to vibratory stimulation decreased but, nonetheless, changed with visual conditions in the same manner as when standing without additional support. We conclude that vision performs a dual function in the control of the vertical posture; it forms the basis for the spatial reference system and serves the source of information on the movements of one's body.  相似文献   

13.
Body lean response to bilateral vibrations of soleus muscles were investigated in order to understand the influence of proprioceptive input from lower leg in human stance control. Proprioceptive stimulation was applied to 17 healthy subjects by two vibrators placed on the soleus muscles. Frequency and amplitude of vibration were 60 Hz and 1 mm, respectively. Vibration was applied after a 30 s of baseline. The vibration duration of 10, 20, 30 s respectively was used with following 30 s rest. Subjects stood on the force platform with eyes closed. Postural responses were characterized by center of pressure (CoP) displacements in the anterior-posterior (AP) direction. The CoP-AP shifts as well as their amplitudes and velocities were analyzed before, during and after vibration. Vibration of soleus muscles gradually increased backward body tilts. There was a clear dependence of the magnitude of final CoP shift on the duration of vibration. The amplitude and velocity of body sway increased during vibration and amplitude was significantly modulated by duration of vibration as well. Comparison of amplitude and velocity of body sway before and after vibration showed significant post-effects. Presented findings showed that somatosensory stimulation has a long-term, direction-specific influence on the control of postural orientation during stance. Further, the proprioceptive input altered by soleus muscles vibration showed significant changes in postural equilibrium during period of vibration with interesting post-effects also.  相似文献   

14.
ObjectiveOlder adults who have recently fallen demonstrate increased postural sway compared with non-fallers. However, the differences in postural control between older adults who were seriously injured (SI) as a result of a fall, compared with those who fell but were not injured (NSI) and non-fallers (NFs), has not been investigated. The objective of the present study was to investigate the underlying postural control mechanisms related to injuries resulting from a fall.MethodsBoth traditional postural sway measures of foot center-of-pressure (CoP) displacements and fractal measures, the Stabilogram-Diffusion Analysis (SDA), were used to characterize the postural control. One hundred older adults aged 65–91 years were tested during narrow base upright stance in eyes closed condition; falls were monitored over a 1-year period.ResultsForty-nine older adults fell during the 1-year follow-up, 13 were seriously injured as a result of a fall (SI), 36 were not injured (NSI), and 49 were non-fallers (NFs); two passed away. The SDA showed significantly higher short-term diffusion coefficients and critical displacements in SI in the anterior–posterior direction compared with both NSI and NF. However, in the medio-lateral direction there were no statistically significant differences between groups. For the traditional measures of sway, the average anterior–posterior CoP range was also larger in SI individuals.ConclusionsThis work suggests that older fallers with a deterioration of anterior–posterior postural control may be at higher risk of serious injury following fall events.  相似文献   

15.
Subjects highly (Highs) and low susceptible to hypnosis (Lows) show different imagery and attentional capabilities and also peculiar somatomotor, vegetative and electroencephalographic differences in basal and task conditions. Since attention is one of the main component of hypnotic susceptibility and also a relevant factor for postural control, the aim of the experiment was to study actual differences between Highs and Lows at the eyes closure during upright stance. Visual and motor imagery as well as attentional/disattentional capabilities were evaluated through psychological tests. Posture was monitored though Elite systems during upright stance with open and closed eyes. At the eyes closure, Highs and Lows exhibited a different body sway modulation. Possible different compensation mechanisms are suggested for the two groups and interactions between attentional/arousal systems responsible of hypnotic phenomenology and postural control are underlined.  相似文献   

16.
The resultant centre of pressure (CP(Res)) trajectories are aimed at controlling body movements in upright stance. When standing on two legs, these trajectories are generated by exerting reaction forces under each foot and by loading-unloading mechanisms intervening at the hip level. To assess the respective contribution of each of these factors in stance maintenance, a group of healthy individuals were tested in several conditions including standing quietly and voluntarily producing under each foot larger CP displacements in phase and in opposite phase along medio-lateral (ML) and antero-posterior (AP) axes. The results, based on the computation of coefficients of correlation between CP(Res) trajectories and various time series including the relative body weight applied to one leg and plantar CP trajectories, highlight some differences according to the axes along which the displacements take place and the amplitudes of the movements. Furthermore, the comparison of the CP(Res) trajectories resulting from each one of these two factors reveals the predominant role played by the loading-unloading mechanisms intervening at the hip level for the movements along the ML axis and those of the plantar CP displacements along the AP axis. Increasing the plantar CP displacements in phase or in opposite phase substantially modifies these contributions although without inferring a shift to the benefit of the other mechanism. The specific morphology of the ankle and hip joints implicated in this postural task plainly explains this postural control organisation. In particular, the link between the segmental configuration of the lower limbs and these mechanisms are discussed.  相似文献   

17.
The authors studied postural responses to bilateral vibratory stimulation (70 Hz, 1 mm, 2 s) of the calf triceps proprioceptors or anterior tibial muscles. Anteroposterior body tilts evoked by vibration were recorded by stabilography. The authors compared the values of postural responses under various conditions of visual control, namely, with normal vision, eyes closed, right–left inversion of the visual space by prismatic spectacles, central vision, and diffuse light. Visual inversion influenced the subjects' proprioceptive postural responses. The amplitude of vibration-evoked shifts of the feet pressure center was minimal with eyes open and significantly increased with eyes closed and inverted vision. Postural responses with visual inversion were significantly stronger than with eyes closed. Since inversion spectacles enabled a subject to see only the central part of the visual field (20°), the reference point was the condition of central vision, i.e., spectacles with same visual angle and without prisms. Postural responses were significantly weaker under these conditions than with visual inversion and eyes closed. Visual field inversion by prismatic spectacles made it impossible to use visual information for stabilizing the human upright posture and, moreover, destabized it. True, this holds only for a randomized experimental protocol, which prevents adaptation to prisms.  相似文献   

18.
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0–30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100–500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson’s disease or in astronauts returning from long-duration space flight.  相似文献   

19.
Abstract

Purpose/background: Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS).

Methods: COP data from 20?s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves.

Results: Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p?<?0.001) in both the anterior–posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior–posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS.

Conclusions: Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.  相似文献   

20.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号