首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans mediate malaria sporozoite targeting to the liver   总被引:9,自引:0,他引:9  
Malaria sporozoites are rapidly targeted to the liver where they pass through Kupffer cells and infect hepatocytes, their initial site of replication in the mammalian host. We show that sporozoites, as well as their major surface proteins, the CS protein and TRAP, recognize distinct cell type-specific surface proteoglycans from primary Kupffer cells, hepatocytes and stellate cells, but not from sinusoidal endothelia. Recombinant Plasmodium falciparum CS protein and TRAP bind to heparan sulphate on hepatocytes and both heparan and chondroitin sulphate proteoglycans on stellate cells. On Kupffer cells, CS protein predominantly recognizes chondroitin sulphate, whereas TRAP binding is glycosaminoglycan independent. Plasmodium berghei sporozoites attach to heparan sulphate on hepatocytes and stellate cells, whereas Kupffer cell recognition involves both chondroitin sulphate and heparan sulphate proteoglycans. CS protein also interacts with secreted proteoglycans from stellate cells, the major producers of extracellular matrix in the liver. In situ binding studies using frozen liver sections indicate that the majority of the CS protein binding sites are associated with these matrix proteoglycans. Our data suggest that sporozoites are first arrested in the sinusoid by binding to extracellular matrix proteoglycans and then recognize proteoglycans on the surface of Kupffer cells, which they use to traverse the sinusoidal cell barrier.  相似文献   

2.
Plasmodium sporozoites suppress the respiratory burst and antigen presentation of Kupffer cells, which are regarded as the portal of invasion into hepatocytes. It is not known whether immune modulation of Kupffer cells can affect the liver stage. In the present study, we found that sporozoites inoculated into Wistar rats could be detected in the liver, spleen, and lung; however, most sporozoites were arrested in the liver. Sporozoites were captured by Kupffer cells lined with endothelial cells in the liver sinusoid before hepatocyte invasion. Pretreatment with TLR3 agonist poly(I:C) and TLR2 agonist BCG primarily activated Kupffer cells, inhibiting the sporozoite development into the exoerythrocytic form, whereas Kupffer cell antagonists dexamethasone and cyclophosphamide promoted development of the liver stage. Our data suggests that sporozoite development into its exoerythrocytic form may be associated with Kupffer cell functional status. Immune modulation of Kupffer cells could be a promising strategy to prevent malaria parasite infection.  相似文献   

3.
Sneaking in through the back entrance: the biology of malaria liver stages   总被引:5,自引:0,他引:5  
Malaria infection is caused by sporozoites, the life cycle stage of Plasmodium that is transmitted by female anopheline mosquitoes. The inoculated sporozoites migrate in the skin, enter a capillary and use the bloodstream for the long haul to the liver. Here, the parasites invade hepatocytes and differentiate to thousands of merozoites that specifically infect red blood cells. Hepatocytes, however, are not directly accessible to sporozoites entering the liver sinusoid. The liver phase of the malaria life cycle can occur only if the parasites first cross the layer of sinusoidal cells that line the liver capillaries. Experimental observations show that sporozoite entry into the liver parenchyma involves a complex cascade of events, from binding to extracellular matrix proteoglycans via passage through Kupffer cells and transmigration through several hepatocytes, until the final host cell is found. By choosing the liver as their initial site of replication, Plasmodium sporozoites can exploit the tolerogenic properties of this unique immune organ to evade the host's immune response.  相似文献   

4.
Liver infection is an obligatory step in malarial transmission, but it remains unclear how the sporozoites gain access to the hepatocytes, which are separated from the circulatory system by the liver sinusoidal cell layer. We found that a novel microneme protein, named sporozoite microneme protein essential for cell traversal (SPECT), is produced by the liver-infective sporozoite of the rodent malaria parasite, Plasmodium berghei. Targeted disruption of the spect gene greatly reduced sporozoite infectivity to the liver. In vitro cell invasion assays revealed that these disruptants can infect hepatocytes normally but completely lack their cell passage ability. Their apparent liver infectivity was, however, restored by depletion of Kupffer cells, hepatic macrophages included in the sinusoidal cell layer. These results show that malarial sporozoites access hepatocytes through the liver sinusoidal cell layer by cell traversal motility mediated by SPECT and strongly suggest that Kupffer cells are main routes for this passage. Our findings may open the way for novel malaria transmission-blocking strategies that target molecules involved in sporozoite migration to the hepatocyte.  相似文献   

5.
Smooth muscle cell migration and proliferation contribute to neointimal hyperplasia and vascular stenosis after endothelial denudation. Previous studies revealed that apolipoprotein E (apoE) is an effective inhibitor of platelet-derived growth factor-directed smooth muscle cell migration and proliferation and that the anti-migratory function is mediated via apoE binding to low density lipoprotein receptor-related protein-1 (LRP-1). This study was undertaken to identify the intracellular pathway by which apoE binding to LRP-1 results in inhibition of smooth muscle cell migration. The results showed that apoE increased intracellular cAMP levels 3-fold after 5 min, and the increase was sustained for more than 1 h. As a consequence, apoE also increased protein kinase A (PKA) activity in smooth muscle cells. Importantly, suppression of PKA activity with a cell-permeable peptide inhibitor of PKA abolished the inhibitory effect of apoE on smooth muscle cell migration. These results indicated that apoE inhibition of smooth muscle cell migration is mediated via the activation of cAMP-dependent PKA. Additional experiments revealed that apoE also inhibited fibroblasts migration toward platelet-derived growth factor by a similar mechanism of cAMP-dependent PKA activation. It is noteworthy that apoE failed to increase cAMP levels or inhibit migration of LRP-1-negative mouse embryonic fibroblasts and LRP-1-deficient smooth muscle cells. Taken together, these findings established the mechanism by which apoE inhibits cell migration, i.e. via cAMP-dependent protein kinase A activation as a consequence of its binding to LRP-1.  相似文献   

6.
Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.  相似文献   

7.
Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.  相似文献   

8.
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.  相似文献   

9.
Plasmodium sporozoites traverse Kupffer cells on their way into the liver. Sporozoite contact does not elicit a respiratory burst in these hepatic macrophages and blocks the formation of reactive oxygen species in response to secondary stimuli via elevation of the intracellular cAMP concentration. Here we show that increasing the cAMP level with dibutyryl cyclic adenosine monophosphate (db-cAMP) or isobutylmethylxanthine (IBMX) also modulates cytokine secretion in murine Kupffer cells towards an overall anti-inflammatory profile. Stimulation of Plasmodium yoelii sporozoite-exposed Kupffer cells with lipopolysaccharide or IFN-γ reveals down-modulation of TNF-α, IL-6 and MCP-1, and up-regulation of IL-10. Prerequisite for this shift of the cytokine profile are parasite viability and contact with Kupffer cells, but not invasion. Whilst sporozoite-exposed Kupffer cells become TUNEL-positive and exhibit other signs of apoptotic death such as membrane blebbing, nuclear condensation and fragmentation, sporozoites remain intact and appear to transform to early exo-erythrocytic forms in Kupffer cell cultures. Together, the in vitro data indicate that Plasmodium possesses mechanisms to render Kupffer cells insensitive to pro-inflammatory stimuli and eventually eliminates these macrophages by forcing them into programmed cell death.  相似文献   

10.
Malaria infection is initiated when Anopheles mosquitoes inject Plasmodium sporozoites into the skin. Sporozoites subsequently reach the liver, invading and developing within hepatocytes. Sporozoites contact and traverse many cell types as they migrate from skin to liver; however, the mechanism by which they switch from a migratory mode to an invasive mode is unclear. Here, we show that sporozoites of the rodent malaria parasite Plasmodium berghei use the sulfation level of host heparan sulfate proteoglycans (HSPGs) to navigate within the mammalian host. Sporozoites migrate through cells expressing low-sulfated HSPGs, such as those in skin and endothelium, while highly sulfated HSPGs of hepatocytes activate sporozoites for invasion. A calcium-dependent protein kinase is critical for the switch to an invasive phenotype, a process accompanied by proteolytic cleavage of the sporozoite's major surface protein. These findings explain how sporozoites retain their infectivity for an organ that is far from their site of entry.  相似文献   

11.
12.
Direct infection of hepatocytes by sporozoites of Plasmodium berghei   总被引:10,自引:0,他引:10  
To identify the unknown liver cell type initially invaded by sporozoites of mammalian malaria, young rats were inoculated intravenously with large numbers of Plasmodium berghei sporozoites obtained from infected Anopheles stephensi mosquitoes. Fine structural studies of liver specimens obtained from the rats within 2 min after inoculation demonstrated the presence of morphologically unaltered sporozoites in the cytoplasm of hepatocytes. Many sporozoites were also observed undergoing cytolysis within the lysophagosomes of Kupffer cells, as well as other phagocytic cells. These observations strongly suggest direct infection of the hepatocyte by the sporozoite.  相似文献   

13.
A substantial and protective response against malaria liver stages is directed against the circumsporozoite protein (CSP) and involves induction of CD8(+) T cells and production of IFN-gamma. CSP-derived peptides have been shown to be presented on the surface of infected hepatocytes in the context of MHC class I molecules. However, little is known about how the CSP and other sporozoite Ags are processed and presented to CD8(+) T cells. We investigated how primary hepatocytes from BALB/c mice process the CSP of Plasmodium berghei after live sporozoite infection and present CSP-derived peptides to specific H-2K(d)-restricted CD8(+) T cells in vitro. Using both wild-type and spect(-/-) P. berghei sporozoites, we show that both infected and traversed primary hepatocytes process and present the CSP. The processing and presentation pathway was found to involve the proteasome, Ag transport through a postendoplasmic reticulum compartment, and aspartic proteases. Thus, it can be hypothesized that infected hepatocytes can contribute in vivo to the elicitation and expansion of a T cell response.  相似文献   

14.
The major surface protein of malaria sporozoites, the circumsporozoite protein, binds to heparan sulfate proteoglycans on the surface of hepatocytes. It has been proposed that this binding event is responsible for the rapid and specific localization of sporozoites to the liver after their injection into the skin by an infected anopheline mosquito. Previous in vitro studies performed under static conditions have failed to demonstrate a significant role for heparan sulfate proteoglycans during sporozoite invasion of cells. We performed sporozoite attachment and invasion assays under more dynamic conditions and found a dramatic decrease in sporozoite attachment to cells in the presence of heparin. In contrast to its effect on attachment, heparin does not appear to have an effect on sporozoite invasion of cells. When substituted heparins were used as competitive inhibitors of sporozoite attachment, we found that sulfation of the glycosaminoglycan chains at both the N- and O-positions was important for sporozoite adhesion to cells. We conclude that the binding of the circumsporozoite protein to hepatic heparan sulfate proteoglycans is likely to function during sporozoite attachment in the liver and that this adhesion event depends on the sulfated glycosaminoglycan chains of the proteoglycans.  相似文献   

15.
The superoxide anion generation in Ehrlicg ascites tumour (EAT) cells increased more than two-fold in the presence of the tumour promoter, tetradecanoyl phorbol myristate acetate (TPA). Epinephrine and dibutryl cAMP (Bt2 cAMP) inhibited in a dose-dependent manner, both basal and TPA-triggered superoxide generation in EAT cells. The kinetics of inhibition of superoxide generation showed a maximum inhibition between 30 and 40 min of preincubation with epinephrine or Bt2 cAMP of EAT cells and coincided with an increase in activity of a phosphoprotein phosphatase. In TPA-treated EAT cells, epinephrine or Bt2 cAMP increased the phosphatase activity in a dose-dependent manner. In vitro EGTA, EDTA and sodium fluoride inhibited phosphatase activity. Superoxide generation in response to TPA in Triton-permeabilized EAT cells was inhibited by inclusion of the phosphatase in the assay. Taken together, these results clearly suggest that the phosphatase activity in EAT cells develops as a result of protein kinase A (PKA) and protein kinase C (PKC)-mediated phosphorylation of the phosphatase which then mediates dephosphorylation of the PKC-triggered phosphorylation of proteins to inhibit respiratory burst. A cross-talk between PKA and PKC pathways negatively modulates superoxide generation in EAT cells.  相似文献   

16.
ABSTRACT. To identify the unknown liver cell type initially invaded by sporozoiles of mammalian malaria, young rats were inoculated intravenously with large numbers of Plasmodium berghei sporozoites obtained from infected Anopheles stephensi mosquitoes. Fine structural studies of liver specimens obtained from the rats within 2 min after inoculation demonstrated the presence of morphologically unaltered sporozoites in the cytoplasm of hepatocytes. Many sporozoites were also observed undergoing cytolysis within the lysophagosomes of Kupffer cells, as well as other phagocytic cells. These observations strongly suggest direct infection of the hepatocyte by the sporozoite.  相似文献   

17.
Addition of cAMP to cells has been shown to inhibit phosphatidylinositol (PI) metabolism. cAMP has been reported to inhibit an enzyme in this pathway, PI kinase and it has been suggested that this inhibition is due to phosphorylation of PI kinase by the cAMP dependent protein kinase (PKA). In the present study we directly investigated if the inhibitory effect of cAMP was mediated by PKA. In membranes derived from murine hepatocytes we found that cAMP inhibited PI kinase but other adenine derivatives were more potent inhibitors. Moreover, it was found that the effects of the derivatives were unlikely to be due secondarily to the production of cAMP via their interaction with adenosine receptors. Through studies employing an inhibitor of PKA, mutant cells lacking PKA, and addition of purified catalytic subunit of PKA, we found that the inhibitory effect of cAMP was not mediated by PKA. In addition, the inhibitory effect of cAMP and adenosine was retained upon partial purification of PI kinase. Pulse chase experiments affirmed that the inhibitory effect was not due to breakdown of PI but rather to inhibition of its synthesis. We conclude that the inhibitory effect of cAMP and related compounds on PI kinase is not mediated by PKA dependent phosphorylation but rather appears to be a direct effect of these agents.  相似文献   

18.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

19.
In the past decade, one of the most intriguing subjects in understanding the mechanism of malaria infection has been explanation of the role of Kupffer cells. These liver cells, which play an important part in the body's defense against infection, seemed to have on essential supportive role in the homing o f sporozoites. Do Kupffer cells favor the establishment of primary malaria infection? Extensive research has revealed much, but still not everything we need to know about the sporozoite-Kupffer cell affair.  相似文献   

20.
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA‐like protein, merozoite apical erythrocyte‐binding ligand (MAEBL). MAEBL‐deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号