首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to pancreatic islets, isolated beta-cells stimulated by glucose display irregular and asynchronous increases in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). Here, clusters of 5-30 cells were prepared from a single mouse islet or from pools of islets, loaded with fura-2, and studied with a camera-based system. [Ca(2+)](i) oscillations were compared in pairs of clusters by computing the difference in period and a synchronization index lambda. During perifusion with 12 mM glucose, the clusters exhibited regular [Ca(2+)](i) oscillations that were quasi-perfectly synchronized (Delta period of 1.4% and index lambda close to 1.0) between cells of each cluster. In contrast, separate clusters were not synchronized, even when prepared from one single islet. Pairs of clusters neighboring on the same coverslip were not better synchronized than pairs of clusters examined separately (distinct coverslips). We next attempted to synchronize clusters perifused with 12 mM glucose by applying external signals. A single pulse of 20 mM glucose, 10 mM amino acids, or 10 microM tolbutamide transiently altered [Ca(2+)](i) oscillations but did not reset the clusters to oscillate synchronously. On a background of 12 mM glucose, repetitive applications (1 min/5 min) of 10 microM tolbutamide, but not of 20 mM glucose, synchronized separate clusters. Our results identify a level of beta-cell heterogeneity intermediate between single beta-cells and the whole islet. They do not support the idea that substances released by islet cells serve as paracrine synchronizers. However, synchronization can be achieved by an external signal, if this signal has a sufficient strength to overwhelm the intrinsic rhythm of glucose-induced oscillations and is repetitively applied.  相似文献   

2.
Lohr C 《Cell calcium》2003,34(3):295-303
Ca2+ signalling influences many processes in the adult and developing nervous system like exocytosis, synaptic plasticity, and growth cone motility. Optical techniques in combination with fluorescent Ca2+ indicators are the most frequently used methods to measure Ca2+ signalling in cells. In the present study, a new method for ratiometric confocal Ca2+ imaging was developed, and the usefulness of the system was tested with two different neuronal preparations. Developing Manduca sexta antennal lobe neurons were loaded with the Ca2+-sensitive dye Fura Red-AM, and the ratio of fluorescence excited at 457 and 488nm was measured with a confocal laser scanning microscope. During pupal stages 4-12, the antennal lobe neuropil is restructured which includes the ingrowth of olfactory receptor axons, dendritic outgrowth of antennal lobe neurons, and synaptogenesis. In antennal lobe neurons, application of the AChR agonist carbachol induced Ca2+ oscillations the amplitude and frequency of which changed during stages 4-9, while at the end of synaptogenesis, at stages 11 and 12, only single Ca2+ transients were elicited. The Ca2+ oscillations were blocked by D-tubocurarine and Cd2+, indicating that they were due to Ca2+ influx through voltage-gated Ca2+ channels, activated by nAChR-mediated membrane depolarization. To test whether single action potentials can induce Ca2+ transients detectable by Fura Red, individual leech Retzius neurons were injected iontophoretically with the Ca2+ indicator, and the membrane potential was recorded during Ca2+ imaging. Single action potentials induced transient increases in the Fura Red ratio measured in the axon, while trains of action potentials elicited Ca2+ transients that could also be recorded in the cell body and the nucleus. The results show that Fura Red can be used as a ratiometric Ca2+ indicator for confocal imaging.  相似文献   

3.
L Combettes  T R Cheek    C W Taylor 《The EMBO journal》1996,15(9):2086-2093
The quantal behaviour of inositol trisphosphate (InsP3) receptors allows rapid graded release of Ca2+ from intracellular stores, but the mechanisms are unknown. In Ca2+-depleted stores loaded with Fura 2, InsP3 caused concentration dependent increases in the rates of fluorescence quench by Mn2+ that were unaffected by prior incubation with InsP3, indicating that InsP3 binding did not cause desensitization. When Fura 2 was used to report the luminal free [Ca2+] after inhibition of further Ca2+ uptake, submaximal concentrations of InsP3 caused rapid, partial decreases in fluorescence ratios. Subsequent addition of a maximal InsP3 concentration caused the fluorescence to fall to within 5% of that recorded after ionomycin. Addition of all but the lowest concentrations of InsP3 to stores loaded with the lower affinity indicator, Calcium Green-5N, caused almost complete emptying of the stores at rates that increased with InsP3 concentration. The lowest concentration of InsP3 (10 nM) slowly emptied approximately 80% of the stores, but within 3 min the rate of Ca2+ release slowed leaving approximately 7 microM Ca2+ within the stores, which was then rapidly released by a maximal InsP3 concentration. In stores co-loaded with both indicators, InsP3-evoked Ca2+ release appeared quantal with Fura 2 and largely non-quantal with Calcium Green-5N; the discrepancy is not, therefore, a direct effect of the indicators. The fall in luminal [Ca2+] after activation of InsP3 receptors may, therefore, cause their inactivation, but only after the Ca2+ content of the stores has fallen by approximately 95% to < or = 10 microM.  相似文献   

4.
L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.  相似文献   

5.
In neurons exposed to glutamate, Ca2? influx triggers intracellular Zn2? release via an as yet unclear mechanism. As glutamate induces a Ca2?-dependent cytosolic acidification, the present work tested the relationships among intracellular Ca2? concentration ([Ca2?](i)), intracellular pH (pH(i) ), and [Zn2?](i). Cultured hippocampal neurons were exposed to glutamate and glycine (Glu/Gly), while [Zn2?](i), [Ca2?](i) and pH(i) were monitored using FluoZin-3, Fura2-FF, and 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Glu/Gly applications decreased pH(i) to 6.1 and induced intracellular Zn2? release in a Ca2?-dependent manner, as expected. The pH(i) drop reduced the affinity of FluoZin-3 and Fura-2-FF for Zn2?. The rate of Glu/Gly-induced [Zn2?](i) increase was not correlated with the rate of [Ca2?](i) increase. Instead, the extent of [Zn2?](i) elevations corresponded well to the rate of pH(i) drop. Namely, [Zn2?](i) increased more in more highly acidified neurons. Inhibiting the mechanisms responsible for the Ca2?-dependent pH(i) drop (plasmalemmal Ca2? pump and mitochondria) counteracted the Glu/Gly-induced intracellular Zn2? release. Alkaline pH (8.5) suppressed Glu/Gly-induced intracellular Zn2? release whereas acidic pH (6.0) enhanced it. A pH(i) drop to 6.0 (without any Ca2? influx or glutamate receptor activation) led to intracellular Zn2? release; the released Zn2? (free Zn2? plus Zn2?) bound to Fura-2FF and FluoZin-3) reached 1 μM.  相似文献   

6.
Using microfluorescence in combination with image-analysis techniques we monitored intracellular calcium ([Ca(2+)](i)) dynamics in mouse islets of Langerhans loaded with fura-2 and recorded in vivo. [Ca(2+)](i) oscillates in the glycaemias range 5-10 mM, the duration of the oscillations being directly proportional to the blood glucose concentration. The analysis of different areas within the same islet shows that [Ca(2+)](i) oscillations are synchronous throughout the islet. These results show that in vivo, individual islets of Langerhans behave as a functional syncytium and suggest the existence of secretory pulses of insulin.  相似文献   

7.
Elevation of intracellular free zinc ([Zn2+]i) probably contributes to cell death in injury paradigms involving calcium deregulation and oxidative stress such as glutamate excitotoxicity. However, it is difficult to monitor both ions simultaneously in live cells. Here we present a new method using fluorescence microscopy and the ion sensitive indicators fura-2FF and FluoZin-3 to monitor both [Ca2+]i and [Zn2+]i in primary cortical neurons. We show that the new single wavelength dye FluoZin-3 responds robustly to small zinc loads, is insensitive to high Ca2+ or Mg2+, and is relatively unaffected by low pH or oxidants. The ratiometric indicator fura-2FF is sensitive to both Ca2+ and Zn2+. However, in conditions analogous to excitotoxic glutamate exposure where [Ca2+]i is high relative to [Zn2+]i, we found that fura-2FF responds mostly to [Ca2+]i but is relatively unaffected by low [Zn2+]i. Moreover, fura-2FF ratio changes caused by high [Ca2+]i or high [Zn2+]i could be distinguished because each ion produces a different spectral response. Finally, dual dye experiments showed that FluoZin-3 and fura-2FF respond robustly to [Zn2+]i and [Ca2+]j, respectively, in the same neurons during intense glutamate exposure. These studies provide a novel method for the simultaneous detection of both calcium and zinc in cells.  相似文献   

8.
Digital image analysis was employed for resolving the temporal and spatial variations of the cytoplasmic Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells loaded with the Ca(2+)-indicator Fura-2. Glucose-stimulated individual beta-cells exhibited large amplitude oscillations of [Ca2+]i with a mean frequency of 0.33 min-1. When Ca2+ diffusion was restricted by increasing the Ca2+ buffering capacity, the sugar-induced rise of [Ca2+]i preferentially affected the peripheral cytoplasm. When glucagon was present glucose also caused less prominent oscillations with about a 10-fold higher frequency superimposed on an elevated [Ca2+]i. In small clusters of 6-14 cells the average frequency of the large amplitude oscillations increased to 0.60 min-1. The clusters were found to contain micro-domains of electrically coupled cells with synchronized oscillations. After increasing the glucose concentration, adjacent domains became functionally coupled. The oscillations originated from different cells in the cluster. Also the fast glucagon-dependent oscillations were synchronized between cells and had different origins. The results indicate that coupling of beta-cells leads to an increased frequency of the large amplitude oscillations, and that the oscillatory characteristics are determined collectively among electrically coupled beta-cells rather than by particular pacemaker cells. In the light of these data it is necessary to reconsider the previous ideas that glucose-induced oscillations of membrane potential and [Ca2+]i require coupling between many beta-cells, and that the peak [Ca2+]i values reached during oscillations should increase with the size of the coupled cluster.  相似文献   

9.
Glucose-induced insulin secretion is thought to be mediated by submicromolar increases in intracellular Ca2+, although the intracellular processes are not well understood. We have used the previously characterized digitonin-permeabilized insulin-secreting pancreatic islet model to study the role of myo-inositol 1,4,5-trisphosphate (IP3), a putative second messenger for mobilization of intracellular Ca2+. Ca2+ efflux from the endoplasmic reticulum was studied with or without vanadate present to inhibit Ca2+ reuptake. IP3 (10 microM), at a free Ca2+ level of 0.06 microM, increased Ca2+ release by 30% and, when vanadate was present, by 50%. Maximal and half-maximal Ca2+ release was observed at 10 microM- and 2.5 microM-IP3, respectively. IP3 provoked a rapid release that was followed by slow reuptake. Reuptake was diminished in the presence of vanadate. Inositol 1,4-bisphosphate, inositol 1-phosphate and other phosphoinositide metabolites did not have any significant effect. Because increases in Ca2+ levels in the submicromolar range have been previously shown to induce insulin release in digitonin-permeabilized islets, our results are consistent with the concept of IP3 serving as a second messenger for insulin secretion.  相似文献   

10.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

11.
Pancreatic islets, or suspensions of islet cells, from noninbred ob/ob-mice were incubated with chlorotetracycline and analyzed for Ca2+-dependent fluorescence in a microscope. Unless logarithmically transformed, signals from islets were asymmetrically distributed with unstable variance. Signals from cells pelleted in glass capillaries were more homogeneous and depended linearly on the thickness of the sample. The effect of sample thickness and a significant enhancement of fluorescence by alloxan suggest that beta-cells were involved in producing the signal from whole islets. The signal from dispersed cells was probably diagnostic of Ca2+ in beta-cell plasma membranes because it was suppressed by La3+ and had a spectrum indicative of an apolar micromilieu; fluorescent staining of cell surfaces was directly seen at high magnification. Fluorescence from cells was enhanced by 0.5-10 mM Ca2+ in a dose-dependent manner, whereas less than 0.5 mM Ca2+ saturated the probe alone in methanol. The signal from islets or dispersed cells was suppressed by 5 mM theophylline; that from cells was also suppressed by 0.5 mM 3-isobutyl-1-methylxanthine, 1.2 or 15 mM Mg2+, 3-20 mM D-glucose, and, to a lesser extent, 20 mM 3-O-methyl-D-glucose. D-glucose was more inhibitory in the absence than in the presence of Mg2+, as if Mg2+ and D-glucose influenced the same Ca2+ pool. L-glucose, D-mannopheptulose, or diazoxide had no noticeable effect and 20 mM bicarbonate was stimulatory. The results suggest that microscopy of chlorotetracycline-stained cells can aid in characterizing calcium pools of importance for secretion. Initiation of insulin release may be associated with an increas  相似文献   

12.
The cytoplasmic calcium concentration (Ca2+i) was measured in individual mouse pancreatic beta-cells loaded with fura-2 by recording the 340/380 nm fluorescence excitation ratio. An increase of the glucose concentration from 3 to 20 mM, caused initial lowering of Ca2+i followed by a rise with a peak preceding constant elevation at an intermediary level. However, at 11 mM glucose there were large Ca2+i oscillations with a frequency of 1 cycle per 2-6 min. The results indicate that both first and second phase secretion depend on elevated Ca2+i, and that many electrically coupled cells collectively determine the pace of rhythmic depolarization.  相似文献   

13.
14.
Alloxan was found to inhibit a Ca2+- and calmodulin-dependent protein kinase recently identified in pancreatic islets. This effect of alloxan may be specifically related to the inhibitory action of alloxan on insulin secretion from islets since: 1) in islet-cell subcellular fractions, alloxan at micromolar concentrations irreversibly inhibits the Ca2+- and calmodulin-dependent protein kinase activity; 2) pretreatment of intact islets with alloxan at concentrations that inhibit insulin secretion similarly inhibits the protein kinase activity; and 3) alloxan inhibition of both insulin secretion and protein kinase activity in intact islets can be prevented by D-glucose. This inhibition by alloxan appears to be a direct effect on the enzyme since alloxan treatment of either the islet homogenate or the microsomal fraction enriched in protein kinase activity inhibited the kinase activity with similar concentration dependence. These results suggest that alloxan-induced inhibition of a Ca2+- and calmodulin-dependent protein kinase may represent a critical inhibitory site which mediates alloxan-induced inhibition of insulin secretion.  相似文献   

15.
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous arachidonic acid at concentrations between 1.25 to 10 microM elicited significant Ca2+ release from the ER at a free Ca2+ concentration of 0.1 microM. Arachidonic acid-induced Ca2+ release was not due to the metabolites of arachidonic acid. Arachidonic acid induced a rapid release of Ca2+ within 2 min. Comparison of arachidonic acid-induced Ca2+ release with IP3-induced Ca2+ release revealed a similar molar potency of arachidonic acid and IP3. The combination of both arachidonic acid and IP3 resulted in a greater effect on Ca2+ mobilization from the ER than either compound alone. The mass of endogenous arachidonic acid released by islets incubated with 28 mM glucose was measured by mass spectrometric methods and was found to be sufficient to achieve arachidonic acid concentrations equal to or exceeding those required to induce release of Ca2+ sequestered in the ER. These observations indicate that glucose-induced arachidonic acid release could participate in glucose-induced Ca2+ mobilization and insulin secretion by pancreatic islets, possibly in cooperation with IP3.  相似文献   

16.
Insulin secretion in the intact organism, and by the perfused pancreas and groups of isolated perifused islets, is pulsatile. We have proposed a metabolic model of glucose-induced insulin secretion in which oscillations in the ATP/ADP ratio drive alterations in metabolic and electrical events that lead to insulin release. A key prediction of our model is that metabolically driven Ca2+ oscillations will also occur. Using the fluorescent Ca2+ probe, fura 2, digital image analysis, and sensitive O2 electrodes, we investigated cytosolic free Ca2+ responses and O2 consumption in perifused rat islets that had been maintained in culture for 1-4 days. We found that elevated ambient glucose increased the average cytosolic free Ca2+ level, the ATP/ADP ratio, and oxygen consumption, as previously found in freshly isolated islets. Oscillatory patterns were obtained for Ca2+, O2 consumption, and insulin secretion in the presence of 10 and 20 mM glucose. Very low amplitude oscillations in cytosolic free Ca2+ were observed at 3 mM nonstimulatory glucose levels. Evaluation of the Ca2+ responses of a large series of individual islets, monitored by digital image analysis and perifused at both 3 and 10 mM glucose, indicated that the rise in glucose concentration caused more than a doubling of the average cytosolic free Ca2+ value and a 4-fold increase in the amplitude of the oscillations with little change in period. The pattern of Ca2+ change within the islets was consistent with recruitment of responding cells. The coexistence of oscillations with similar periods in insulin secretion, oxygen consumption, and cytosolic free Ca2+ is consistent with the model of metabolically driven pulsatile insulin secretion.  相似文献   

17.
Regulation of glucose-induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) was investigated by using a novel technique, electroporation from an electrolyte-filled capillary, to deliver energy metabolites to the intracellular compartment of mouse islets. Intracellular application of ATP resulted in a nifedipine-sensitive increase in [Ca2+]i, consistent with a KATP-channel dependent mechanism of Ca2+ influx. [Ca2+]i in islets exposed to 10 mM glucose oscillated with a period of approximately 3 min, often superimposed with faster oscillations. Electroporation of ATP blocked all types of oscillations and elevated [Ca2+]i while delivery of ADP had no effect on oscillations. Intracellular delivery of glucose-6-phosphate or fructose-1,6-bisphosphate tended to transform slow oscillations to fast oscillations. These results demonstrate that modulation of ATP concentrations and glycolytic flux are important in development of slow oscillations.  相似文献   

18.
In pancreatic beta-cells Zn(2+) is crucial for insulin biosynthesis and exocytosis. Despite this, little is known about mechanisms of Zn(2+) transport into beta-cells or the regulation and compartmentalization of Zn(2+) within this cell type. Evidence suggests that Zn(2+) in part enters neurons and myocytes through specific voltage-gated calcium channels (VGCC). Using a Zn(2+)-selective fluorescent dye with high affinity and quantum yield, FluoZin-3 AM and the plasma membrane potential dye DiBAC(4)(3) we applied fluorescent microscopy techniques for analysis of Zn(2+)-accumulating pathways in mouse islets, dispersed islet cells, and beta-cell lines (MIN6 and beta-TC6f7 cells). Because the stimulation of insulin secretion is associated with cell depolarization, Zn(2+) (5-10 mum) uptake was analyzed under basal (1 mm glucose) and stimulatory (10-20 mm glucose, tolbutamide, tetraethylammonium, and high K(+)) conditions. Under both basal and depolarized states, beta-cells were capable of Zn(2+) uptake, and switching from basal to depolarizing conditions resulted in a marked increase in the rate of Zn(2+) accumulation. Importantly, L-type VGCC (L-VGCC) blockers (verapamil, nitrendipine, and nifedipine) as well as nonspecific inhibitors of Ca(2+) channels, Gd(3+) and La(3+), inhibited Zn(2+) uptake in beta-cells under stimulatory conditions with little or no change in Zn(2+) accumulation under low glucose conditions. To determine the mechanism of VGCC-independent Zn(2+) uptake the expression of a number of ZIP family Zn(2+) transporter mRNAs in islets and beta-cells was investigated. In conclusion, we demonstrate for the first time that, in part, Zn(2+) transport into beta-cells takes place through the L-VGCC. Our investigation demonstrates direct Zn(2+) accumulation in insulin-secreting cells by two pathways and suggests that the rate of Zn(2+) transport across the plasma membrane is dependent upon the metabolic status of the cell.  相似文献   

19.
Stimulatory concentrations of glucose induce two patterns of cytosolic Ca2+ concentration ([Ca2+]c) oscillations in mouse islets: simple or mixed. In the mixed pattern, rapid oscillations are superimposed on slow ones. In the present study, we examined the role of the membrane potential in the mixed pattern and the impact of this pattern on insulin release. Simultaneous measurement of [Ca2+]c and insulin release from single islets revealed that mixed [Ca2+]c oscillations triggered synchronous oscillations of insulin secretion. Simultaneous recordings of membrane potential in a single -cell within an islet and of [Ca2+]c in the whole islet demonstrated that the mixed pattern resulted from compound bursting (i.e., clusters of membrane potential oscillations separated by prolonged silent intervals) that was synchronized in most -cells of the islet. Each slow [Ca2+]c increase during mixed oscillations was due to a progressive summation of rapid oscillations. Digital image analysis confirmed the good synchrony between subregions of an islet. By contrast, islets from sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3 (SERCA3)-knockout mice did not display typical mixed [Ca2+]c oscillations in response to glucose. This results from a lack of progressive summation of rapid oscillations and from altered spontaneous electrical activity, i.e., lack of compound bursting, and membrane potential oscillations characterized by lower-frequency but larger-depolarization phases than observed in SERCA3+/+ -cells. We conclude that glucose-induced mixed [Ca2+]c oscillations result from compound bursting in all -cells of the islet. Disruption of SERCA3 abolishes mixed [Ca2+]c oscillations and augments -cell depolarization. This latter observation indicates that the endoplasmic reticulum participates in the control of the -cell membrane potential during glucose stimulation. electrical activity; insulin-secreting cell; thapsigargin  相似文献   

20.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号