首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.  相似文献   

2.
We report the simultaneous introduction of three insecticidal genes (the Bt genes cry1Ac and cry2A, and the snowdrop lectin gene gna) into commercially important indica rice varieties M7 and Basmati 370, by particle bombardment. Transgenic plants expressed Cry1Ac, Cry2A and GNA at different levels, either singly or in combination at 0.03–1%, 0.01–0.5% and 0.01–2.5% of total soluble protein, respectively. The transgenes showed stable transmission and expression, and R1 transgenic plants provided significant (p<0.01) protection against three of the most important insect pests of rice: rice leaf folder (Cnaphalocrocis medinalis), yellow stemborer (Scirpophaga incertulas) and brown planthopper (Nilaparvata lugens). The triple transformants showed significantly (p<0.05) higher resistance to these insects than plants expressing single transgenes. Bioassays using the triple-transgenic plants showed 100% eradication of the rice leaf folder and yellow stem borer, and 25% reduction in the survival of the brown planthopper. The greatest reduction in insect survival, and the greatest reduction in plant damage, occurred in plants expressing all three transgenes. This approach maximises the utility of gene transfer technology to introduce combinations of genes whose products disrupt different biochemical or physiological processes in the same insect, providing a multi-mechanism defence.  相似文献   

3.
4.
The ATF1 gene, which encodes alcohol acetyltransferase (AATase), was cloned from Saccharomyces cerevisiae and brewery lager yeast (Saccharomyces uvarum). The nucleotide sequence of the ATF1 gene isolated from S. cerevisiae was determined. The structural gene consists of a 1,575-bp open reading frame that encodes 525 amino acids with a calculated molecular weight of 61,059. Although the yeast AATase is considered a membrane-bound enzyme, the results of a hydrophobicity analysis suggested that this gene product does not have a membrane-spanning region that is significantly hydrophobic. A Southern analysis of the yeast genomes in which the ATF1 gene was used as a probe revealed that S. cerevisiae has one ATF1 gene, while brewery lager yeast has one ATF1 gene and another, homologous gene (Lg-ATF1). Transformants carrying multiple copies of the ATF1 gene or the Lg-ATF1 gene exhibited high AATase activity in static cultures and produced greater concentrations of acetate esters than the control.  相似文献   

5.
Papillomaviruses are known to cause benign or malignant lesions in various animals. In cattle, bovine papillomavirus (BPV) is the etiologic agent of papillomatosis and neoplasia of the upper gastrointestinal tract and urinary bladder. Currently, there are no standard diagnostic tests or prophylactic vaccines. Protection against papillomavirus infection is conferred by neutralizing antibodies directed towards the major structural protein L1. These antibodies can be efficiently induced by immunization with virus-like particles that are formed spontaneously after L1 gene expression in recombinant systems. The yeast Pichia pastoris is known to provide an efficient system for expression of proteins due to reduced cost and high levels of protein production. We evaluated P. pastoris for expression of the L1 gene from BPV1, BPV2 and BPV4. After methanol induction, the recombinants were able to produce L1 proteins of the three different BPV types. To increase heterologous L1 protein levels, a codon optimization strategy was used for production under bioreactor conditions. The BPV1 L1 protein was identified by monoclonal antibody anti-6xHis. This is the first report of BPV L1 expression in yeast.  相似文献   

6.
7.
8.
The yeast ARL1 gene, encoding a guanine-nucleotide binding protein of the Arf-like family, exhibits a synthetic genetic interaction with CCZ1. An arl1 Delta ccz1 Delta double mutant was viable but grew slowly, was more sensitive to caffeine, Ca(2+), Zn(2+), and hygromycin B than either single mutant, and had a more severe vacuolar protein sorting phenotype. Overexpression of ARL1 did not suppress ccz1 Delta mutant phenotypes, nor did overexpression of CCZ1 suppress arl1 Delta mutant phenotypes. We conclude that ARL1 and CCZ1 independently contribute to both ion homeostasis and protein sorting.  相似文献   

9.
Hat1 is the catalytic subunit of the only type B histone acetyltransferase known (HAT-B). The enzyme specifically acetylates lysine 12, and to a lesser extent lysine 5, of free, non-chromatin-bound histone H4. The complex is usually isolated with cytosolic fractions and is thought to be involved in chromatin assembly. The Saccharomyces cerevisiae HAT-B complex also contains Hat2, a protein stimulating Hat1 catalytic activity. We have now identified by two-hybrid experiments Hif1 as both a Hat1- and a histone H4-interacting protein. These interactions were dependent on HAT2, indicating a mediating role for Hat2. Biochemical fractionation and co-immunoprecipitation assays demonstrated that Hif1 is a component of a yeast heterotrimeric HAT-B complex, in which Hat2 bridges Hat1 and Hif1 proteins. In contrast to Hat2, this novel subunit does not appear to regulate Hat1 enzymatic activity. Nevertheless, similarly to Hat1, Hif1 influences telomeric silencing. In a localization analysis by immunofluorescence microscopy on yeast strains expressing tagged versions of Hat1, Hat2, and Hif1, we have found that all three HAT-B proteins are mainly localized in the nucleus. Thus, we propose that the distinction between A- and B-type enzymes should henceforth be based on their capacity to acetylate histones bound to nucleosomes and not on their location within the cell. Finally, by Western blotting assays, we have not detected differences in the in vivo acetylation of H4 lysine 12 (acK12H4) between wild-type and hat1Delta, hat2Delta, or hif1Delta mutant strains, suggesting that the level of HAT-B-dependent acK12H4 may be very low under normal growth conditions.  相似文献   

10.
Genetic analysis of yeast RAS1 and RAS2 genes   总被引:59,自引:0,他引:59  
We present a genetic analysis of RAS1 and RAS2 of S. cerevisiae, two genes that are highly homologous to mammalian ras genes. By constructing in vitro ras genes disrupted by selectable genes and introducing these by gene replacement into the respective ras loci, we have determined that neither RAS1 nor RAS2 are by themselves essential genes. However, ras1 - ras2 - spores of doubly heterozygous diploids are incapable of resuming vegetative growth. We have determined that RAS1 is located on chromosome XV, 7 cM from ade2 and 63 cM from his3; and RAS2 is located on chromosome XIV, 2 cM from met4 . We have also constructed by site-directed mutagenesis a missense mutant, RAS2val19 , which encodes valine in place of glycine at the nineteenth amino acid position, the same sort of missense mutation that is found in some transforming alleles of mammalian ras genes. Diploid yeast cells that contain this mutation are incapable of sporulating efficiently, even when they contain wild-type alleles.  相似文献   

11.
A cloned putative promoter region upstream of the 16S rRNA gene of the western X-disease phytoplasma was inserted behind the promoterless chloramphenicol acetyltransferase gene of plasmid pPL603. The DNA construct was used to transform Bacillus subtilis cells. The transformants were assayed for chloramphenicol acetyltransferase activity, showing that the phytoplasma promoter is efficiently expressed in a B. subtilis background.  相似文献   

12.
13.
A genomic library was prepared in Escherichia coli from DNA of wild-type Xanthomonas campestris pv. campestris (aetiological agent of crucifer black rot), partially digested with endonuclease EcoRI, using the mobilisable broad host range cosmid vector pLAFR1. Recombinant plasmids contained inserts ranging in size from 19.1 to 32.3 kb (mean 26.6). Certain of the clones complemented E. coli auxotrophic markers. Using the narrow host range plasmid pRK2013 as a helper the pooled recombinant plasmids were transferred conjugally to X. c. campestris mutants, and clones were identified which restored yellow pigmentation to white mutants, prototrophy to amino acid auxotrophs and pathogenicity towards turnip plants to two non-pathogenic mutants. The lesion in one mutant (8288, complemented by the plasmid pIJ3000) is unknown. However mutant 8237 is defective in production of extracellular protease and polygalacturonate lyase and restoration of pathogenicity by complementation with the plasmid pIJ3020 concomitantly restored both enzyme levels to wild-type values.  相似文献   

14.
Red blood cell (RBC) and plasma (P) magnesium levels have been determined in 372 male mice of 13 inbred and H-2 congenic strains with C3H or B10 genetic backgrounds. Several groups of individuals belonging to the same strains have been tested at various times over a 2-year period to verify the results. Time and interstrain variations are highly significant for both RBC and P Mg. Statistical analyses made either with or without corrections for the time effect show that the largest variations are due to the genetic background (P < 10–10), the effect of the H-2 complex being smaller but nevertheless highly significant (P < 10–4 to 10–6), except for the RBC Mg of the strains with B10 background. These findings can be compared with those previously obtained in man, and they demonstrate the high heritability of blood Mg concentration and its association with the major histocompatibility complex or with closely linked genes.  相似文献   

15.
16.
The SSA1 and SSA2 genes of the yeast Saccharomyces cerevisiae.   总被引:12,自引:1,他引:11       下载免费PDF全文
  相似文献   

17.
18.
Christopher M. Thomas   《Plasmid》1981,5(3):277-291
It has previously been concluded that regions tentatively designated trfA and trfB, located at 16–18.7 and 54–56 kb, respectively, on the genome of broad host range plasmid RK2 provide trans-acting functions involved in plasmid replication and maintenance in Escherichia coli (Thomas et al., 1980). A third region, the replication origin, oriRK2, located at 12 kb on the genome, is also required. A segment of DNA containing oriRK2 can be linked to a nonreplicating selective marker and can replicate as an autonomous plasmid so long as DNA of RK2 carrying the gene for one or more trans-acting replication functions is present in the same cell on an independent plasmid or integrated into the chromosome. It is demonstrated here that the trfA region alone can provide the trans-acting functions necessary for replication from oriRK2. Deletion of the trfB region in trans to an oriRK2 plasmid does not correlate with alteration in copy number or stability of the oriRK2 plasmid. Temperature-sensitive mutants defective in plasmid maintenance can apparently arise from mutations in both the trfA and trfB regions as indicated by complementation analysis of three different mutants. The trfA and trfB regions from two mutant plasmids have been cloned and used to allow a physically separate but functionally dependent oriRK2 plasmid to replicate at 30 °C. When the source of trfA and trfB is a trfB mutant the oriRK2 plasmid is temperature stable but is temperature sensitive when the source is a trfA mutant. This confirms that only trfA is essential for initiation at and elongation from oriRK2 which is probably the primary event in RK2 replication and suggests that the trfB region plays some other role in plasmid maintenance in plasmids carrying all three regions, oriRK2, trfA, and trfB.  相似文献   

19.
We demonstrate that Sprouty genes 1, 2 and 4 are expressed in several developing organs of the craniofacial area and trunk, including the brain, cochlea, nasal organs, teeth, salivary gland, lungs, digestive tract, kidneys and limb buds. In organs such as the semicircular canal, Rathke's pouch, nasal organs, the follicle of vibrissae and teeth, Sprouty1 and Sprouty2 are expressed in the epithelium and Sprouty4 in the mesenchyme or neuronal tissue, while in the lung Sprouties1, 2 and 4 are all expressed mainly in the epithelial tissue. In the kidney, Sprouty1 is prominent in the ureteric bud whereas Sprouty2 and 4 are expressed in both the ureteric bud and the kidney mesenchyme and glomeruli deriving from it. The expression profiles suggest roles for these Sprouties in the epithelial-mesenchymal interactions that govern organogenesis.  相似文献   

20.
Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains. Received: 12 March 1997 / Received revision: 17 April 1997 / Accepted: 27 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号