首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Maltosylisothiocyanate (MITC), synthesized as an affinity label for the hexose carrier, has been reported to label a Band 3 or Mr = 100,000 protein in human erythrocytes, in contradistinction to many studies showing the carrier as a Band 4.5 or Mr = 45,000-66,000 protein on gel electrophoresis. In this work the possibility that MITC interacts with the Band 3 anion transporter was studied. In intact human erythrocytes, MITC labeling was largely confined to Band 3 and was decreased by several competitive inhibitors of hexose transport. However, MITC also appeared to react with the anion transport protein, since MITC labeling of Band 3 was irreversibly decreased by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and since MITC also irreversibly inhibited both tritiated dihydro-DIDS labeling of Band 3 and sulfate uptake in intact cells. Although 20 microM DIDS had little effect on hexose transport, the labeling of erythrocyte Band 3 by the dihydro analog was significantly diminished by competitive inhibitors of hexose transport. These data suggest that MITC labels in part the anion transporter as well as other DIDS-reactive sites on Band 3 which appear to be sensitive to competitive inhibitors of hexose transport.  相似文献   

2.
Extracellular treatment of human erythrocytes with papain completely converted the chymotryptic 38,000-dalton fragment of Band 3 to the 29,000-dalton fragment and inhibited the transport of inorganic phosphate in the cells. The inhibition, however, was not complete, indicating the presence of two components in the anion-transport system: the one resistant to papain digestion and the other sensitive to the digestion. The latter activity is well correlated with the degradation of the 38,000-dalton fragment. The activity remaining in the cells treated with papain was markedly different from that of the control cells. The remaining activity was not inhibited by pyridoxal phosphate and dinitrostilbene-2,2'-disulfonic acid, potent inhibitors to the anion transport, whereas phenyl phosphate inhibited the activities of both papain-treated and control cells. The results indicate that the anion-transport system consists of multiple anion-binding sites and a part of the system which is sensitive to pyridoxal phosphate and dinitrostilbene-2,2'-disulfonic acid was located in the papain-sensitive portion of 38,000-dalton fragment. A possible model of the anion-transport system was presented.  相似文献   

3.
Pyridoxal 5'-phosphate (PLP) is a substrate of band 3, the erythrocyte anion transport protein. It competitively inhibits anion transport and labels two exofacial chymotryptic domains (the 17-kDa (CH17) and the 35-kDa (CH35) integral fragments). Two mol of PLP are bound/mol of each fragment at saturation. PLP labeling of both domains is competitive with chloride at constant ionic strength. Addition of DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), protects PLP labeling of CH35 but exposes new, nonoverlapping sites on CH17.4,4'-Diisothiocyanostilbene-2,2'-disulfonate reduces PLP labeling to both domains with time, while NAP-taurine (N(-4-azido-2-nitrophenyl)2-aminosulfonate) has no effect on either domain. At low chloride (balance citrate) and high DNDS, we can strongly suppress CH35 labeling and selectively titrate CH17 with PLP. Correlation of fractional transport inhibition with fractional PLP covalent coverage of CH17, quantitatively follows the 1:2 correlation line indicating that full coverage of CH17 sites (which constitute half of the total PLP-labeling sites on band 3) exactly inhibits one-half of transport. PLP labeling of CH35 sites accounts for the other half of inhibition. The inhibition-labeling correlation plots are nonlinear in the absence of DNDS, indicating the presence of allosteric interactions between the domains. We conclude that CH17 and CH35 compose nonoverlapping, functionally equivalent, allosterically linked transport inhibitory subdomains on band 3.  相似文献   

4.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition.  相似文献   

5.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

6.
The transport inhibitor, eosin 5-maleimide, reacts specifically at an external site on the membrane-bound domain of the anion exchange protein, Band 3, in the human erythrocyte membrane. The fluorescence of eosin-labeled resealed ghosts or intact cells was found to be resistant to quenching by CsCl, whereas the fluorescence of labeled inside-out vesicles was quenched by about 27% at saturating CsCl concentrations. Since both Cs+ and eosin maleimide were found to be impermeable to the red cell membrane and the vesicles were sealed, these results indicate that after binding of the eosin maleimide at the external transport site of Band 3, the inhibitor becomes exposed to ions on the cytoplasmic surface. The lifetime of the bound eosin maleimide was determined to be 3 ns both in the absence and presence of CsCl, suggesting that quenching is by a static rather than a dynamic (collisional) mechanism. Intrinsic tryptophan fluorescence of erythrocyte membranes was also investigated using anion transport inhibitors which do not appreciably absorb light at 335 nm. Eosin maleimide caused a 25% quenching and 4,4'-dibenzamidodihydrostilbene-2,2'-disulfonate) caused a 7% quenching of tryptophan fluorescence. Covalent labeling of red cells by either eosin maleimide or BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) caused an increase in the susceptibility of membrane tryptophan fluorescence to quenching by CsCl. The quenching constant was similar to that for the quenching of eosin fluorescence and was unperturbed by the presence of 0.5 M KCl. Neither NaCl nor Na citrate produced a large change in the relative magnitude of the tryptophan emission. The tryptophan residues that can be quenched by CsCl appear to be different from those quenched by eosin or BIDS and are possibly located on the cytoplasmic domain of Band 3. The results suggest that a conformational change in the Band 3 protein accompanies the binding of certain anion transport inhibitors to the external transport site of Band 3 and that the inhibitors become exposed on the cytoplasmic side of the red cell membrane.  相似文献   

7.
Summary After treatment of red cell ghosts with chymotrypsin, the predominant intrinsic peptides remaining in the membrane fraction are 15,000 and 9,000 daltons mol wt. After partial extraction with Triton X-100, the residual membrane vesicles have almost no other stained peptides and such vesicles are reported to carry out anion transport activities sensitive to specific inhibitors. In vesicles derived from cells treated with DIDS(4,4-diisothiocyano-2,2-stilbene disulfonic acid), an irreversible inhibitor of anion transport that is highly localized in an abundant intrinsic protein known as band 3, the probe is largely recovered in the 15,000 dalton peptide. The part of band 3 from which it is derived is a previously reported 17,000 transmembrane segment (Steck, T.L., Ramos, R., Strapazon, E., 1976,Biochemistry 15:1154). The 9,000-dalton peptide is present in the vesicles in a one-to-one mole ratio with the 15,000-dalton peptide, suggesting that both are derived from the same protein. This conclusion is supported by the finding that the 35,000-dalton C-terminal end of band 3, derived by chymotrypsin treatment of cells, is further proteolysed if the cells are converted to ghosts and its disappearance coincides with the appearance of the 9,000-dalton fragment. Evidence is presented that the 9,000-dalton fragment crosses the bilayer and that it is closely associated with the 15,000-dalton peptide.This paper is dedicated to the memory of Walther Wilbrandt.  相似文献   

8.
The stilbenedisulfonate inhibitory site of the human erythrocyte anion-exchange system has been characterized by using serveral fluorescent stilbenedisulfonates. The covalent inhibitor 4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate (BIDS) reacts specifically with the band 3 protein of the plasma membrane when added to intact erythrocytes, and the reversible inhibitors 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) and 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS) show a fluorescence enhancement upon binding to the inhibitory site on erythrocyte ghosts. The fluorescence properties of all three bound probes indicate a rigid, hydrophobic site with nearby tryptophan residues. The Triton X-100 solublized and purified band 3 protein has similar affinities for DBDS, BADS, and 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) to those observed on intact erythrocytes and erythrocyte ghosts, showing that the anion binding site is not perturbed by the solubilization procedure. The distance between the stilbenedisulfonate binding site and a group of cysteine residues on the 40 000-dalton amino-terminal cytoplasmic domain of band 3 was measured by the fluorescence resonance energy transfer technique. Four different fluorescent sulfhydryl reagents were used as either energy transfer donors or energy transfer acceptors in combination with the stilbenedisulfonates (BIDS, DBDS, BADS, and DNDS). Efficiencies of transfer were measured by sensitized emisssion, donor quenching, and donor lifetime changes. Although these sites are approachable from opposite sides of the membrane by impermeant reagents, they are separated by only 34--42 A, indicating that the anion binding site is located in a protein cleft which extends some distance into the membrane.  相似文献   

9.
The effect of temperature and chemical modification on the interaction of the human erythrocyte Band 3 protein (the anion transport protein) with 4-acetamido-4'-isothiocyanostilbene 2,2'-disulfonate (SITS; Ki = 10 microM)-Affi-Gel 102 resin was studied. Band 3 binds to the affinity resin in two states; weakly bound, which is eluted by 1 mM 4-benzamido-4'-aminostilbene 2,2'-disulfonate (BADS; Ki = 2 microM), and strongly bound, which is eluted only under denaturing conditions by 1% lithium dodecyl sulfate (LDS). At 4 degrees C, most of band 3 was present initially in the weakly bound form and very little in the strongly bound form. With longer incubations at 4 degrees C, the weakly bound form was slowly converted to the strongly bound form. At 37 degrees C, most of Band 3 was rapidly converted to the strongly bound form, with some Band 3 still remaining in the weakly bound form. Band 3 dimers, labelled with 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS) in one monomer, did bind to immobilized SITS but did not become tightly bound upon incubation at 37 degrees C. Since the covalent attachment of DIDS to one monomer prevented the adjacent monomer from becoming tightly bound to immobilized SITS ligand, this observation suggests that the inhibitor-binding sites of the two adjacent monomers must be interacting with each other. When the inhibitor site of Band 3 was selectively modified by citrate in the presence of 1-ethyl-3-(3-azonia-4,4-dimethylpentyl)carbodiimide (EAC), Band 3 bound to the resin was more easily eluted by BADS, suggesting reduced affinity for immobilized SITS. However, citrate-modified Band 3 did become tightly bound upon incubation at 37 degrees C.  相似文献   

10.
A photoaffinity probe, procaine azide, was employed to determine the sites of interaction of procaine in normal and sickle cell erythrocytes. Studies show that the number of binding sites and affinity of procaine to membranes derived from normal and sickled cell erythrocytes were similar, although procaine retards the in vitro formation of irreversibly sickled cells from cells. The results show that procaine azide, a photoaffinity analogue of procaine, is covalently incorporated into both protein (60–70%) and lipid (40–30%) components of the membrane. Sodium dodecyl sulfate-gel electrophoresis of the labeled ghosts show that procaine binds specifically to band 3 and periodic acid-Schiff staining bands in membranes derived from labeled erythrocytes. Binding of procaine or covalent incorporation of procaine azide into membrane proteins does not affect the phosphate transport. Moreover, pre-treatment of intact erythrocytes with 4,4′-diisothiocyano-2,2′-stilbene disulfonate, an anion transport inhibitor, did not affect either the binding or covalent incorporation of procaine azide into erythrocytes. These results indicate that the binding of procaine azide to Band 3 protein occurs at a locus different than that involved in anion translocation process.  相似文献   

11.
A hydrophobic 5,300-dalton peptide was isolated from the 38,000-dalton domain of Band 3 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and reversed-phase high-performance liquid chromatography. The peptide was affinity labeled with pyridoxal phosphate and sodium [3H]borohydride when erythrocytes were incubated in vitro. The peptide was not labeled with these agents when cells were incubated in the presence of a specific inhibitor of anion transport, suggesting that the peptide contains at least a part of the active center for the anion transport system in the cell membrane. The peptide was eluted from a reversed-phase high-performance liquid chromatography column with a high concentration of acetonitrile (more than 65%), although the elution pattern of the hydrophobic peptide was not as sharp as that of the soluble peptides. However, a satisfactory separation was achieved when this procedure was employed in combination with sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

12.
Canine renal brush border membrane proteins that bind stilbenedisulfonate inhibitors of anion exchange were identified by affinity chromatography. A 130-kDa integral membrane glycoprotein from brush border membrane was shown to bind specifically to 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate immobilized on Affi-Gel 102 resin. The bound protein could be eluted effectively with 1 mM 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS). The 130-kDa protein did not bind to the affinity resin in the presence of 1 mM BADS or when the solubilized extract was covalently labeled with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). This protein was labeled with [3H]H2DIDS, and the labeling was prevented by BADS. The 130-kDa protein did not cross-react with antibody raised against human or dog erythrocyte Band 3 protein. The 130-kDa protein was accessible to proteinase K and chymotrypsin digestion in vesicles but not to trypsin. The 130-kDa protein was sensitive to endo-beta-N-acetylglucosaminidase F treatment both in the solubilized state and in brush border membrane vesicles showing that it was a glycoprotein and that the carbohydrate was on the exterior of the vesicles. This glycoprotein was resistant to endo-beta-N-acetylglucosaminidase H treatment suggesting a complex-type carbohydrate structure. The protein bound concanavalin A, wheat germ agglutinin, and Ricinus communis lectins, and it could be purified using wheat germ agglutinin-agarose.  相似文献   

13.
Catabolism of the anion transport protein in human erythrocytes   总被引:2,自引:0,他引:2  
M Morrison  W Grant  H T Smith  T J Mueller  L Hsu 《Biochemistry》1985,24(22):6311-6315
We identified the catabolic products of protein 3 in human erythrocytes. Protein 3, the major protein of the erythrocyte membrane, functions in anion transport and reacts covalently with tritiated 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid ([3H]DIDS), a very selective inhibitor of anion transport. In this study, [3H]DIDS was used to label protein 3 in the membranes of normal cells and those from a donor heterozygous for a variant of protein 3, defined by its elongated amino-terminal end. Both types of cells contained [3H]DIDS-labeled peptides other than protein 3. A protein fragment of 60K molecular weight was found in normal cells, whereas both 60K and 63K fragments were identified in cells from the heterozygote. These peptides are identical with those generated by treatment of intact erythrocytes with Pronase or chymotrypsin. A polyclonal rabbit antibody specific for the purified 60K fragment of protein 3 was used to detect this protein and its products in the erythrocyte membrane. Autoradiographs of membrane peptides that were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and allowed to react with the monospecific antibody showed, in addition to protein 3, a 60K fragment and fragments in the 40K region and in the 20-30K region. Cells containing the protein 3 variant yielded two fragments showing a 3K difference in molecular weight in all three regions, demonstrating that degradation of protein 3 is identical in normal erythrocytes and those heterozygous for the variant. This observation also confirms the common derivation of the fragments from protein 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Phosphate entry into chloride-loaded human erythrocytes is inhibited by treatment of cells with the water-soluble carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) in the absence of added nucleophile. EAC does not penetrate the erythrocyte membrane or lead to significant intermolecular cross-linking of membrane proteins. At neutral extracellular pH in chloride-free medium, only about 50% of transport is rapidly and irreversibly inhibited, but at alkaline pH, inhibition is more rapid and complete. Inhibition by EAC was reversible in the presence of extracellular NaCl. Modification of membrane sulfhydryl groups does not prevent inhibition of phosphate transport by EAC but almost complete protection is afforded by 4,4-dinitrostilbene-2,2-disulfonic acid, a reversible competitive inhibitor of anion transport. N-(4-Azido-2-nitrophenyl)-2-aminoethylsulfonate, a reversible noncompetitive inhibitor of anion transport did not protect against EAC inhibition of transport but prevented reversal of inhibition in saline medium. Transport inhibition by [3H]EAC did not lead to specific incorporation of radioactivity into Band 3, the anion transport protein. These results suggest that inhibition of anion transport by EAC is due to modification of a carboxylic acid residue in or near the transport site accessible from the external face of the membrane. The subsequent fate of the modified carboxyl residue appears to be sensitive to the orientation of the anion transport site.  相似文献   

15.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

16.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

17.
Murine band 3 protein was expressed in oocytes of Xenopus laevis after microinjection of the mRNA from the spleens of anemic mice. The 36Cl- efflux from the oocytes was compared with the chloride fluxes measured in murine red cells. In both oocytes and red cells, the band 3-mediated chloride transport showed the following features: the selective inhibitor of band 3-mediated anion transport, 4,4'-dinitrostilbene-2,2'-disulfonate exerts its effects only when applied to the outside and not when applied to the inside of the membrane. The K1/2 for inhibition by external 4,4'-dinitrostilbene-2,2'-disulfonate was of the order of 1.5 to 2.0 mumol/l. Flufenamate and persantine also produce similar inhibitory effects. Decreasing the pH from 7.4 to 6.0 leads to some inhibition. It is concluded that essential features of the mode of action of murine erythroid band 3 protein in the plasma membrane of the oocyte are similar to the mode of action in the bilayer of the red blood cell of the mouse.  相似文献   

18.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents.Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a crosslinking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport.Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the non-inhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control of anion transport.  相似文献   

19.
Band 3 is the predominant polypetide and the purported mediator of anion transport in the human erythrocyte membrane. Against a background of minor and apparently unrelated polypeptides of similar electrophoretic mobility, and despite apparent heterogeneity in its glycosylation, the bulk of band 3 exhibits uniform and characteristic behavior. This integral glycoprotein appears to exist as a noncovalent dimer of two ~ 93,000-dalton chains which span the membrane asymmetrically. The protein is hydrophobic in its composition and in its behaviour in aqueous solution and is best solubilized and purified in detergent. It can be cleaved while membrane-bound into large, topographically defined segments. An integral, outer-surface, 38,000-dalton fragment bears most of the band 3 carbohydrate. A 17,000-dalton, hydrophobic glycopeptide fragment spans the membrane. A ~ 40,000-dalton hydrophilic segment represents the cytoplasmic domain. In vitro, glyceraldehyde 3-P dehydrogenase and aldolase bind reversibly, in a metabolite-sensitive fashion, to this cytoplasmic segment. The cytoplasmic domain also bears the amino terminus of this polypetide, in contrast to other integral membrane proteins. Recent electron microscopic analysis suggests that the poles of the band 3 molecule can be seen by freezeetching at the two original membrane surfaces, while freeze-fracture reveals the transmembrane disposition of band 3 dimer particles. There is strong evidence that band 3 mediates 1:1 anion exchange across the membrane through a conformational cycle while remaining fixed and asymmetrical. Its cytoplasmic pole can be variously perturbed and even excised without a significant alteration of transport function. However, digestion of the outer-surface region leads to inhibition of transport, so that both this segment and the membrane-spanning piece (which is slectively labeled by covalent inhibitors of transport) may be presumed to be involved in transport. Genetic polymorphism has been observed in the structure and immunogenicity of the band 3 polypeptide but this feature has not been related to variation in anion transport or other band 3 activities.  相似文献   

20.
The oligomeric state of human Band 3 (Mr = 95,000), the erythrocyte membrane anion exchanger, was examined by size exclusion high performance liquid chromatography in solutions containing the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). Band 3 was heterogeneous with respect to oligomeric composition, the predominant (70%) species being a dimer that bound 0.57 mg of C12E8/mg of protein (Stokes radius = 78 A, s20,w = 6.9 S). Variable amounts of larger oligomers were also present; however, no evidence for equilibration between oligomeric species was observed in detergent solution. Analytical and large zone size exclusion chromatography showed that Band 3 could not be dissociated to monomers, other than by protein denaturation. The membrane domain of Band 3 (Mr = 52,000) was also dimeric, but without evidence for higher oligomeric forms, which implies that the interactions responsible for higher associations involve the cytoplasmic domain. Prelabeling of Band 3 with the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate had no effect upon the oligomeric state of either intact Band 3 or its 52-kDa membrane domain. Band 3 oligomeric state could be reversibly changed in the membrane by altering the pH of the solution. The fraction of Band 3 not associated with the cytoskeleton was almost entirely dimeric. Band 3 purified from erythrocytes separated by density gradient centrifugation revealed that older red cells contained a larger proportion of higher oligomers than did younger cells. We conclude that Band 3, in the membrane and in C12E8 solution, exists as a mixture of dimers and larger oligomers. The higher oligomers interact with the cytoskeleton, increase in amount with cell age, and are held together by interactions of the cytoplasmic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号