首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islet-activating protein (IAP) is a substance purified from the culture medium of Bordetella pertussis, and its main action is characterized by the enhancement of secretory response to glucose and other stimuli in pancreatic islet. In this experiment, the effect of IAP on epinephrine-induced secretion of immunoreactive insulin (IRI) and glucagon (IRG) was investigated in normal dogs. Epinephrine suppressed IRI secretion and it had a little increment to IRG secretion in control group, while IRI and IRG secretions were significantly increased by epinephrine in IAP pretreated group. Using beta-blocker (Propranolol) with epinephrine, these increments of IRI and IRG secretions in IAP pretreated group were abolished. However, using alpha-blocker (Phentolamine) with epinephrine, these secretions of IRI and IRG in IAP pretreated group were much more increased than epinephrine alone induced secretions. Blood glucose levels were lower in IAP pretreated group than in control group throughout the loading tests in all of the experiments. These findings suggest that (1) IAP decreases blood glucose level and (2) IAP enhances epinephrine-induced secretion of insulin and glucagon by acceleration of beta-adrenergic effect and by reduction of alpha-adrenergic suppression in dogs.  相似文献   

2.
The mechanism whereby "islet-activating protein" (IAP) purified from the culture medium of Bordetella pertussis potentiates insulin secretion was studied by experiments in vitro with islets of rats once injected with IAP (0.5 micrograms/100 g body weight, 3 days before killing) or with islets that had been exposed to IAP (0.1 to 100 ng/ml) for 24 h. The IAP treatment markedly enhanced insulin secretory responses and cAMP accumulation in islets, facilitated the efflux of 45Ca through the cell membrane, and abolished the alpha-adrenergic action of epinephrine (and somatostatin) to inhibit glucose-induced insulin release, cAMP accumulation, and 45Ca uptake. These effects of the IAP treatment were reduced when islets were incubated in a low calcium medium. Based on these results, it was concluded that IAP interacts directly but slowly with the islet B cell in such a manner as to render more calcium available to the stimulus-secretion coupling mechanism as a result of sustained activation of native calcium ionophores on the cell membrane.  相似文献   

3.
The manner in which islet-activating protein (IAP), a protein purified from the culture medium of Bordetella pertussis, interacts with the islet B-cell was studied by following the progressive development of IAP-induced reversal of alpha-adrenergic inhibition of insulin release during maintenance of islets in culture with glucose and epinephrine. This action of IAP developed in an exponential manner dependent on its concentration after a true lag period of about 1 h. The lag period was not grossly dependent on the concentration of IAP added but highly dependent on temperature of culture, and was still seen upon adding a second dose of IAP to partially stimulated cells. After 24-h culture significantly more insulin was secreted with IAP at a concentration as low as 1 pg/ml and the half-maximal effect was observed at 0.1 ng/ml. The development of IAP action occurred even in the islets that had been exposed to IAP for only 30 s, but was significantly prevented by anti-IAP serum added before the end of the lag period. IAP was effective in the presence of cycloheximide, an inhibitor of protein synthesis, or of vinblastine or cytochalasin B, microtubular-microfilamentous modifiers. It is suggested that the IAP molecule is rapidly bound to the receptor area of the islet B-cell and then is gradually inserted into the cell membrane before appearance of its action to activate native calcium ionophores. This slow interaction of IAP with the membrane may be responsible for potentiation of insulin secretory and cAMP responses of the cell to various stimuli as well as for reversal of alpha-adrenergic inhibition.  相似文献   

4.
Chemical modification of amino groups in the molecule of islet-activating protein (IAP), pertussis toxin, resulted in differential modification of biological activities of the toxin estimated in vivo with rats. Acetamidination of ε-amino groups of 50% (or more) of lysine residues in the IAP molecule totally abolished the lymphocytosis-promoting activity, but exerted no effects on the epinephrine-hyperglycemia inhibitory activity, of the toxin. Both activities were abolished by acylation of 50% or more of the amino groups probably due to the destruction of the toxin's quarternary structure. In contrast, the subunit assembly of IAP was maintained after exhaustive acetamidination of its lysine residues. The ADP-ribosyltranferase (or NAD-glycohydrolase) activity of the A-protomer (the biggest subunit) of IAP, which is responsible for the principal action of the toxin, enhancing insulin secretory responses and thereby inhibiting epinephrine hyperglycemia, was not affected by acetamidination of lysine residues. Thus, the A-protomer moiety of IAP is not directly involved in, but the amino groups of lysine residues in other subunits are selectively essential for, the development of the toxin-induced lymphocytosis.  相似文献   

5.
Based on the finding reported in the preceding paper (Kanbayashi, et al.: J. Biochem) that subunits of islets-activating protein (IAP), a new protein purified from the culture media of Bordetella pertussis, were inactive as such, but regained the original biological activities when recombined, the conditions required for recovery of the biological activities were studied. Essentially the same biological activities as the native IAP were recovered when the smallest subunit, F-3, was incubated with one of the other subunits, F-1 and F-2, at a pH of around 7, at temperatures below 30 degrees C and for longer than 12 h. During the incubation, association products were formed which were isolated by gel filtration as homogenous proteins that consisted of two subunits probably in a molar ratio of 1 : 1. The native IAP (consisting of two IAP subunits including F-3) were equipotent in enhancing insulin secretory responses, in inhibiting epinephrine-induced hyperglycemia, in inducing leukocytosis and in increasing histamine sensitivity in experimental animals.  相似文献   

6.
Membrane transport of long chain fatty acids in the isolated rat adipocyte can be strongly stimulated by epinephrine (Abumrad, N. A., Perry, P. R., and Whitesell, R. R. (1985) J. Biol. Chem. 260, 9969-9971). We now report that insulin at physiological concentrations can completely block or reverse the epinephrine effect. Insulin was optimally effective at a concentration of about 0.1 nM in inhibiting transport activation by 0.3 and 3 microM epinephrine (0.1 and 1.0 microgram/ml). High concentrations of insulin (above 1 nM) were generally less effective and this was particularly true at the highest dose of epinephrine (1.0 microgram/ml). The insulin effect was shown to be on the transport process since insulin inhibited epinephrine activation of transport in both directions (influx and efflux). No effect of insulin on basal transport was observed over a wide range of concentrations (0.01-10 nM). Insulin's antagonism of transport activation by epinephrine appeared dependent on ATP metabolism since it was abolished by preincubating the cells with dinitrophenol (1 mM). Dinitrophenol, however, could not reverse the insulin effect when exposure to the hormone preceded that to dinitrophenol, consistent with an action of insulin at the transport step. The data indicate that regulation of the membrane transport of fatty acids is a potential site for insulin's action to suppress lipid mobilization.  相似文献   

7.
The effect of islet-activating protein (IAP) purified from culture medium of Bordetella pertussis was examined in dogs. This was assessed by the levels of pancreatic polypeptide (PP) as well as the responses of plasma insulin and glucagon to a parasympathomimetic agent, bethanechol. Plasma responses of these pancreatic hormones were measured before and 5 days after IAP injection. Although IAP had no significant effect on the bethanechol-stimulated increase in plasma glucose, insulin and glucagon, the PP response to bethanechol was significantly reduced after IAP treatment compared with that before IAP (p less than 0.05). In conclusion, IAP significantly and selectively reduced bethanechol-stimulated PP release in the dog although the mechanism remained to be elucidated.  相似文献   

8.
The effects of epinephrine on cyclic AMP content and protein kinase activity were examined in an in situ rat heart preparation. Bolus injection of epinephrine into the superior vena cava caused an increase in the activity ratio (-cyclic AMP/"cyclic AMP) of 12 000 X g supernatant protein kinase. The increase was significant within 5 s and maximal in 10 s. Epinephrine produced a dose-dependent increase in both protein kinase activity ratio and cyclic AMP content. The increases in both parameters exhibited a high degree of correlation. The increase in protein kinase activity ratio observed with low doses of epinephrine (less than or equal to 1 microgram/kg) resulted from an increase in independent protein kinase activity (-cyclic AMP) without a change in total protein kinase activity (+cyclic AMP). However, the increase in the activity ratio observed with higher doses of epinephrine (greater than 1 microgram/kg) was due mainly to a decrease in total protein kinase activity rather than a further increase in independent protein kinase activity. The loss of supernatant total protein kinase activity could be accounted for by an increase in activity associated with particulate fractions obtained from the homogenates. A similar redistribution of protein kinase could be demonstrated by the addition of cyclic AMP to homogenates prepared from hearts not stimulated with epinephrine. These results demonstrate that epinephrine over a wide dose range produces a parallel increase in the content of cyclic AMP and the activation of soluble protein kinase. The findings also suggest that protein kinase translocation to particulate material may depend on the degree of epinephrine-induced enzyme activation.  相似文献   

9.
Pancreatic islets were maintained in culture with or without islet-activating protein (IAP), which is a new protein purified from culture medium of Bordetella pertussis. These cultured islets (IAP-treated or control) were then incubated for 30 min in IAP-free medium with various insulin secretagogues. During incubation, much more insulin was released from IAP-treated islets than control islets in response to glucose, arginine, glucagon, and sulfonylurea. IAP was effective in this regard when added to cultures at concentrations higher than 0.01 ng/ml; the effect was dependent on concentration up to 100 ng/ml. Enhanced insulin secretion was associated with accumulation of cyclic AMP when breakdown of the nucleotide was prevented by a methylxanthine. Epinephrine caused marked inhibitions, via alpha-adrenergic receptors, of glucose-induced insulin release, cyclic AMP accumulation and 45Ca uptake in control islets but did not in IAP-treated islets during incubation. None of these effects of IAP pretreatment were observed unless the medium for incubation was supplemented with Ca ions. 45Ca ion flux through the islet cell membrane was accelerated by the IAP treatment; conceivably, IAP was effective in causing sustained activation of native calcium ionophores on the membrane, which would be responsible for the enhanced insulin and cyclic AMP responses characteristic of IAP-treated islets.  相似文献   

10.
Studies involving pharmacologic or molecular biologic manipulation of Group VIA phospholipase A(2) (iPLA(2)beta) activity in pancreatic islets and insulinoma cells suggest that iPLA(2)beta participates in insulin secretion. It has also been suggested that iPLA(2)beta is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels and arachidonate incorporation into phosphatidylcholine (PC). We have generated iPLA(2)beta-null mice by homologous recombination and have reported that they exhibit reduced male fertility and defective motility of spermatozoa. Here we report that pancreatic islets from iPLA(2)beta-null mice have impaired insulin secretory responses to D-glucose and forskolin. Electrospray ionization mass spectrometric analyses indicate that the abundance of arachidonate-containing PC species of islets, brain, and other tissues from iPLA(2)beta-null mice is virtually identical to that of wild-type mice, and no iPLA(2)beta mRNA was observed in any tissue from iPLA(2)beta-null mice at any age. Despite the insulin secretory abnormalities of isolated islets, fasting and fed blood glucose concentrations of iPLA(2)beta-null and wild-type mice are essentially identical under normal circumstances, but iPLA(2)beta-null mice develop more severe hyperglycemia than wild-type mice after administration of multiple low doses of the beta-cell toxin streptozotocin, suggesting an impaired islet secretory reserve. A high fat diet also induces more severe glucose intolerance in iPLA(2)beta-null mice than in wild-type mice, but PLA(2)beta-null mice have greater responsiveness to exogenous insulin than do wild-type mice fed a high fat diet. These and previous findings thus indicate that iPLA(2)beta-null mice exhibit phenotypic abnormalities in pancreatic islets in addition to testes and macrophages.  相似文献   

11.
Tissue glucose utilization during epinephrine-induced hyperglycemia   总被引:1,自引:0,他引:1  
The aim of this study was to investigate glucose utilization by individual tissues during epinephrine infusion. First, the applicability of the 2-deoxyglucose (2-DG) tracer technique during in vivo hyperglycemia was investigated in model systems in vitro. Epitrochlearis muscle and spleen cells were incubated with 1.25-20 mM glucose. The discrimination against 2-[14C]DG in glucose metabolic pathways, expressed by the lumped constant, remained unchanged over this wide range of glucose concentrations. It was concluded that in vivo hyperglycemia does not preclude the application of the 2-DG method. In a series of in vivo experiments, chronically catheterized conscious rats fasted for 24 h and were infused with epinephrine (0.2 microgram.kg-1.min-1), which produced a two-fold increase in plasma glucose concentration. 2-[14C]DG was injected 30 min after starting the epinephrine infusion and glucose utilization rates of individual tissues were calculated based on the concentration of phosphorylated 2-DG in samples excised at 70 min. The epinephrine infusion increased glucose utilization rates by 40-160% in hindlimb muscles, skin, ileum, liver, spleen, lung, epididymal fat, and kidney, although no change was found in the brain. Mass action of the increased plasma glucose is likely to play an important role in the enhanced rate of glucose utilization.  相似文献   

12.
Inhalation of gas mixtures containing different concentrations of FC12 by anesthetized and normally oxygenated rabbits produces blood levels of FC12 which are stable and proportional to the rate of FC12 in the mixture. From the arterial concentration of 80 microgram/ml FC12 (10 % FC12) mixture) and over, FC12 alone causes effects proportional to doses: arterial pressure decrease with tachycardia; slight morphological alterations of the electrocardiogram at high concentration. Arrhythmia never occurs under the action of FC12 alone even at maximum arterial concentration reached here: 235 microgram/ml (40 % FC12 mixture). Recorded disturbances are always reversible. The intravenous perfusion of epinephrine alone evokes the appearance of premature contractions at only very high doses: 12 microgram/kg/min. The presence of FC12 in blood conjoined with epinephrine induces the inhibition of the hypertensive action of epinephrine at high concentrations and lowers the arrhythmogenic threshold. Both parameters interfere: the arrhythmogenic dose of epinephrine is a function of blood levels of FC12.  相似文献   

13.
Effects of intravenous (IV) infusion of secretin during IV infusion of glucose were examined in normal men. Secretin was administered according to three schedules: with each schedule a comparable priming dose was delivered in the first minute, but this was followed by a maintained (120 min) infusion of secretin at a relatively high rate, or by maintained infusion at one-third that rate, or by brief (15 min) infusion at the lower rate. The lower infusion rate produced increments in secretin in the blood within the range attainable during endogenous secretion. By comparison with effects of glucose alone each secretin infusion enhanced the increments of immunoreactive insulin in the blood. Enhancement of the early release (0-5 min) of insulin was similar with each type of secretin infusion, but the integrated changes in insulin levels through the total infusion period were related to the total doses of secretin. With each dose of secretin glucose tolerance was improved but the three mean glucose curves observed during infusions of secretin were not distinguishable from one another in spite of widely different integrated insulin responses. Secretin did not modify suppression of immunoreactive glucagon or free fatty acids in the blood during hyperglycemia. The results suggest that the effect of continuous administration of secretin on glucose tolerance is not simply related to its integrated insulinotropic action. It is suggested that the effect may be highly dependent on enhancement of insulin secretion early in the response to glycemia, or that it may be due to effects of secretin on glucose production or disposal which are not mediated by insulin.  相似文献   

14.
The subunit structure was studied of islets-activating protein (IAP), a new protein recently isolated from the culture media of Bordetella pertussis and possessing a unique action, i.e., potentiating insulin secretory responses of animals, IAP dissociated into three subunits, F-1, F-2, and F-3, when incubated in 8M urea. Three subunits isolated by chromatography on CM-Sepharose and DEAE-Sepharose columns showed different molecular weights (F-1: 44,000, F-2: 20,000, F-3: 11,000) and different isoelectric points, but similar amino acid compositions. The F-1 subunit consisted of two polypeptide chains linked by S-S bonding(s), while the F-2 and F-3 subunits were single-chain peptides. These subunits, none of which was biologically active alone, associated upon incubation for 2 h at 37 degrees C and regained biological activities after association only when the F-3 subunit was present in the association product. Thus, the F-3 subunit was essential, and the F-1 and F-2 subunits were permissive, for the development of IAP activity in animals.  相似文献   

15.
The acute effects of injections of the human growth hormone-like factor purified from plerocercoids of the tapeworm Spirometra mansonoides on carbohydrate, lipid, and protein metabolisms were determined in intact rats. Male rats were injected ip with saline, insulin, or various doses of partially purified PGF. The rats injected with insulin had significantly reduced serum glucose concentrations but no dose of PGF caused a change in serum glucose levels. Insulin and PGF stimulated [14C]glucose and [14C]leucine oxidation to 14CO2 in adipose tissue and muscle and increased incorporation of both [14C]glucose carbons into lipids and [14C]leucine into protein in fat and muscle. The responses to PGF were dose-dependent and persisted after 3 hr of incubation in vitro. Injections of naloxone prior to injecting PGF to block the stress response did not prevent the stimulation of insulin-like responses by PGF. Therefore, PGF has intrinsic insulin-like activities in normal male rats.  相似文献   

16.
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3β) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1α association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3β phosphorylation levels and glycogen content at 24 h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss.  相似文献   

17.
Mild hyperglycemia was induced in normal rats by oral administration of both diazoxide and D-glucose. After 48 hours of such a treatment, the insulin and glucagon secretory responses of the perfused pancreas to alpha- and beta-D-glucose (3.3 mM) were examined in the presence of 10.0 mM L-leucine. The output of insulin, but not that of glucagon, and the perfusion pressure were higher in treated than control rats. The alpha-anomer of D-glucose was a more potent insulin secretagogue than beta-D-glucose in both control and treated rats. However, the alpha/beta ratio in insulin output was twice higher in control than treated rats. By analogy with other experimental models of diabetes, the attenuation in the anomeric difference of glucose-stimulated insulin output in the treated rats could reflect an altered secretory response to alpha- rather than beta-D-glucose. These findings suggest that hyperglycemia provokes, as a function of its severity and duration, first attenuation and then suppression, if not inversion, of the anomeric preference for alpha-D-glucose in insulin release. They are also compatible with the hypothesis that the anomeric malaise, associated with B-cell glucotoxicity, is caused by a progressive accumulation of glycogen in this cell.  相似文献   

18.
To study effects of Bcl-x(L) in the pancreatic beta-cell, two transgenic lines were produced using different forms of the rat insulin promoter. Bcl-x(L) expression in beta-cells was increased 2- to 3-fold in founder (Fd) 1 and over 10-fold in Fd 2 compared with littermate controls. After exposure to thapsigargin (10 microM for 48 h), losses of cell viability in islets of Fd 1 and Fd 2 Bcl-x(L) transgenic mice were significantly lower than in islets of wild-type mice. Unexpectedly, severe glucose intolerance was observed in Fd 2 but not Fd 1 Bcl-x(L) mice. Pancreatic insulin content and islet morphology were not different from control in either transgenic line. However, Fd 2 Bcl-x(L) islets had impaired insulin secretory and intracellular free Ca(2+) ([Ca(2+)](i)) responses to glucose and KCl. Furthermore, insulin and [Ca(2+)](i) responses to pyruvate methyl ester (PME) were similarly reduced as glucose in Fd 2 Bcl-x(L) islets. Consistent with a mitochondrial defect, glucose oxidation, but not glycolysis, was significantly lower in Fd 2 Bcl-x(L) islets than in wild-type islets. Glucose-, PME-, and alpha-ketoisocaproate-induced hyperpolarization of mitochondrial membrane potential, NAD(P)H, and ATP production were also significantly reduced in Fd 2 Bcl-x(L) islets. Thus, although Bcl-x(L) promotes beta-cell survival, high levels of expression of Bcl-x(L) result in reduced glucose-induced insulin secretion and hyperglycemia due to a defect in mitochondrial nutrient metabolism and signaling for insulin secretion.  相似文献   

19.
The effect of 2'-deoxycoformycin (DCF) on the PFC responses of AKR mice to SE, TNP-Ficoll, and TNP-B. abortus was examined. Subcutaneous injection of DCF 4 days before antigen caused suppression of all three responses by 70 to 78%. In contrast, injection of DCF 1 day after antigen caused enhancement of both the anti-SE and the anti-TNP-Ficoll responses. Although a single high dose of cortisone acetate injected 4 days before antigen caused a similar suppression, the effect of DCF was not mediated via a steroid release, inasmuch as DCF also suppressed the immune response in adrenalectomized mice. The response of BALB/c mice to TNP-Ficoll was also inhibited by DCF pretreatment and enhanced by injection of DCF after antigen. In contrast, in athymic mice DCF caused suppression of the anti-TNP-Ficoll PFC response, whether injected before or after antigen. These results are interpreted as suggesting that DCF causes suppression primarily via an effect on B cells. The enhancement seen in normal but not in athymic mice may possibly be ascribed to an effect on suppressor T cells. Apparently the enhancement of both TD and TI responses caused by DCF injected 1 day after antigen in normal mice is the net result of these two opposing effects. The results imply that helper T cells are resistant to DCF.  相似文献   

20.
A single intravenous injection of alloxan in mice induced hyperglycemia in a dose dependent fashion. This diabetogenic action of alloxan was prevented by a single intraperitoneal injection of the alpha 2-adrenergic agonists, i.e. oxymetazoline, clonidine or epinephrine 40 min prior to the injection of alloxan. The alpha 1-adrenergic agonists, i.e. methoxamine and phenylephrine, and a beta-adrenergic agonist, isoproterenol, failed to prevent the diabetogenic action of alloxan. The inhibitory effect of clonidine on alloxan-induced diabetes was antagonized by yohimbine or phentolamine, but not by prazosin. Although alpha 2-adrenergic agonists caused a transient hyperglycemia at the time of alloxan administration (40 min after the administration of alpha 2-adrenergic agonists), the plasma glucose level at the time of alloxan injection did not correlate with the anti-diabetogenic effect of alpha 2-adrenergic agents. These results clearly demonstrate that the alpha 2-adrenergic mechanism which inhibits insulin release from pancreatic B cells prevented the diabetogenic action of alloxan in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号