首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frederick KK  Kranz JK  Wand AJ 《Biochemistry》2006,45(32):9841-9848
Calmodulin is a central mediator of calcium-dependent signal transduction pathways and regulates the activity of a large number of diverse targets. Calcium-dependent interactions of calmodulin with regulated proteins are of generally high affinity but of quite variable thermodynamic origins. Here we investigate the influence of the binding of the calmodulin-binding domain of calmodulin kinase I on the fast internal dynamics of calcium-saturated calmodulin. NMR relaxation was used to probe motion on the backbone (viewed through the backbone amide NH group) and the side chains (viewed through methyl groups). The distribution of the amplitudes of side chain dynamics is trimodal. The microscopic details of side chain motion are compared with those of a thermodynamically and structurally similar complex of calmodulin with the calmodulin-binding domain of the smooth muscle myosin light chain kinase. While there are no significant differences in backbone dynamics and no net change in methyl-bearing side chain dynamics, a large redistribution of the amplitude of methyl dynamics is observed between the two complexes. The variation in dynamics was largely localized to the heterogeneously dynamic target-binding interface, suggesting that differential dynamics of the binding surface plays a functional role in the high-affinity binding interactions of calmodulin. These results begin to reveal a fundamental role for residual protein entropy in molecular recognition by calmodulin.  相似文献   

2.
The temperature dependence of the internal dynamics of recombinant human ubiquitin has been measured using solution NMR relaxation techniques. Nitrogen-15 relaxation has been employed to obtain a measure of the amplitude of subnanosecond motion at amide N-H sites in the protein. Deuterium relaxation has been used to obtain a measure of the amplitude of motion of methyl-groups in amino-acid side chains. Data was obtained between 5 and 55 degrees C. The majority of amide N-H and methyl groups show a roughly linear (R(2)>0.75) temperature dependence of the associated Lipari-Szabo model-free squared generalized-order parameter (O(2)) describing the amplitude of motion. Interestingly, for those sites showing a linear response, the temperature dependence of the backbone is distinct from that of the methyl-bearing side chains with the former being characterized by a significantly larger Lambda-value, where Lambda is defined as d ln(1 - O)/d lnT. These results are comparable to the sole previous such study of the temperature dependence of protein motion obtained for a calmodulin-peptide complex. This suggests that the distinction between the main chain and methyl-bearing side chains may be general. Insight into the temperature dependence is gathered from a simple two-state step potential model.  相似文献   

3.
The response of the internal dynamics of calcium-saturated calmodulin to the formation of a complex with a peptide model of the calmodulin-binding domain of the smooth muscle myosin light chain kinase has been studied using NMR relaxation methods. The backbone of calmodulin is found to be unaffected by the binding of the domain, whereas the dynamics of side chains are significantly perturbed. The changes in dynamics are interpreted in terms of a heterogeneous partitioning between structure (enthalpy) and dynamics (entropy). These data provide a microscopic view of the residual entropy of a protein in two functional states and suggest extensive enthalpy/entropy exchange during the formation of a protein-protein interface.  相似文献   

4.
Oxidized flavodoxin from Cyanobacterium anabaena PCC 7119 is used as a model system to investigate the fast internal dynamics of a flavin-bearing protein. Virtually complete backbone and side chain resonance NMR assignments of an oxidized flavodoxin point mutant (C55A) have been determined. Backbone and side chain dynamics in flavodoxin (C55A) were investigated using (15)N amide and deuterium methyl NMR relaxation methods. The squared generalized order parameters (S(NH)(2)) for backbone amide N-H bonds are found to be uniformly high ( approximately 0.923 over 109 residues in regular secondary structure), indicating considerable restriction of motion in the backbone of the protein. In contrast, methyl-bearing side chains are considerably heterogeneous in their amplitude of motion, as indicated by obtained symmetry axis squared generalized order parameters (S(axis)(2)). However, in comparison to nonprosthetic group-bearing proteins studied with these NMR relaxation methods, the side chains of oxidized flavodoxin are unusually rigid.  相似文献   

5.
Columbus L  Hubbell WL 《Biochemistry》2004,43(23):7273-7287
In site-directed spin labeling, a nitroxide-containing side chain is introduced at selected sites in a protein. The EPR spectrum of the labeled protein encodes information about the motion of the nitroxide on the nanosecond time scale, which has contributions from the rotary diffusion of the protein, from internal motions in the side chain, and from backbone fluctuations. In the simplest model for the motion of noninteracting (surface) side chains, the contribution from the internal motion is sequence independent, as is that from protein rotary diffusion. Hence, differences in backbone motions should be revealed by comparing the sequence-dependent motions of nitroxides at structurally homologous sites. To examine this model, nitroxide side chains were introduced, one at a time, along the GCN4-58 bZip sequence, for which NMR (15)N relaxation experiments have identified a striking gradient of backbone mobility along the DNA-binding region [Bracken et al. (1999) J. Mol. Biol. 285, 2133]. Spectral simulation techniques and a simple line width measure were used to extract dynamical parameters from the EPR spectra, and the results reveal a mobility gradient similar to that observed in NMR relaxation, indicating that side chain motions mirror backbone motions. In addition, the sequence-dependent side chain dynamics were analyzed in the DNA/protein complex, which has not been previously investigated by NMR relaxation methods. As anticipated, the backbone motions are damped in the DNA-bound state, although a gradient of motion persists with residues at the DNA-binding site being the most highly ordered, similar to those of helices on globular proteins.  相似文献   

6.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.  相似文献   

7.
8.
We studied the temperature dependence of the picosecond internal dynamics of an all-beta protein, neocarzinostatin, by incoherent quasielastic neutron scattering. Measurements were made between 20 degrees C and 71 degrees C in heavy water solution. At 20 degrees C, only 33% of the nonexchanged hydrogen atoms show detectable dynamics, a number very close to the fraction of protons involved in the side chains of random coil structures, therefore suggesting a rigid structure in which the only detectable diffusive movements are those involving the side chains of random coil structures. At 61.8 degrees C, although the protein structure is still native, slight dynamic changes are detected that could reflect enhanced backbone and beta-sheet side-chain motions at this higher temperature. Conversely, all internal dynamics parameters (amplitude of diffusive motions, fraction of immobile scatterers, mean-squared vibration amplitude) rapidly change during heat-induced unfolding, indicating a major loss of rigidity of the beta-sandwich structure. The number of protons with diffusive motion increases markedly, whereas the volume occupied by the diffusive motion of protons is reduced. At the half-transition temperature (T = 71 degrees C) most of backbone and beta-sheet side-chain hydrogen atoms are involved in picosecond dynamics.  相似文献   

9.
Glycerolipids: common features of molecular motion in bilayers   总被引:4,自引:0,他引:4  
In the present study, analysis of 2H NMR line-shape and spin-lattice relaxation behavior has been used to investigate the dynamics of several glycolipid and phospholipid bilayers. The gel-phase spectra of these lipids labeled at the C3 position of the glycerol backbone are broad (approximately 90 kHz) and characteristic of fast-limit axially asymmetric motion. Moreover, anisotropic spin-lattice relaxation is observed in all of these systems. The line-shape and relaxation features of the lipids in the gel phase were best simulated by using a fast-limit three-site jump model, with relative site populations of 0.46, 0.34, and 0.20. This motion is associated with an internal jump about the C2-C3 bond of the glycerol backbone. A second motion, rotation about the long axis of the molecule, is needed to account for the observed temperature dependence of the quadrupolar echo amplitude and the spectral line shape above and below the gel to liquid-crystalline phase transition temperature. On the other hand, the gel-phase spectra of phospholipids labeled at the C2 position of the glycerol backbone are also characterized by a fast internal motion, which is simulated by a two-site librational jump. The results indicate that the glycerol backbone dynamics of the glycolipid and phospholipid systems investigated in this study can be described in terms of common fast internal motions and a slower whole molecule axial motion. These results are compared with previous dynamic studies of similar systems.  相似文献   

10.
Prabhu NV  Lee AL  Wand AJ  Sharp KA 《Biochemistry》2003,42(2):562-570
All-atom, explicit water molecular dynamics simulations of calcium-loaded calmodulin complexed with a peptide corresponding to the smooth muscle myosin light chain kinase target were carried out at 295 and 346 K. Amide and side chain methyl angular generalized order parameters were calculated and analyzed in the context of the protein's structure and dynamics. The agreement between amide order parameters measured by NMR and those from the simulations was found to be good, especially at the higher temperature, indicating both better convergence for the latter and excellent transferrability of the CHARMM parameters to the higher temperature. Subtle dynamical features such as helix fraying were reproduced. A large range of order parameters for the nine calmodulin methionines was observed in the NMR, and reproduced quite well in the simulations. The major determinant of the methionine order parameter was found to be the proximity to side chains of aromatic residues. An upper bound estimate of the difference in backbone entropy between loop and helical regions was extracted from the order parameters using a model of motion in an effective potential. Although loop regions are more flexible than helical regions, it was found that the entropy loss per residue upon folding was only approximately 20% less for loops than for helices. Pairwise correlated motions, which could significantly lower entropy estimates obtained from order parameter analysis alone, were found to be largely absent.  相似文献   

11.
A simple model is used to illustrate the relationship between the dynamics measured by NMR relaxation methods and the local residual entropy of proteins. The expected local dynamic behavior of well-packed extended amino acid side chains are described by employing a one-dimensional vibrator that encapsulates both the spatial and temporal character of the motion. This model is then related to entropy and to the generalized order parameter of the popular "model-free" treatment often used in the analysis of NMR relaxation data. Simulations indicate that order parameters observed for the methyl symmetry axes in, for example, human ubiquitin correspond to significant local entropies. These observations have obvious significance for the issue of the physical basis of protein structure, dynamics, and stability.  相似文献   

12.
It has become clear that the binding of small and large ligands to proteins can invoke significant changes in side chain and main chain motion in the fast picosecond to nanosecond timescale. Recently, the use of a "dynamical proxy" has indicated that changes in these motions often reflect significant changes in conformational entropy. These entropic contributions are sometimes of the same order as the total entropy of binding. Thus, it is important to understand the connections amongst motion between the manifold of states accessible to the native state of proteins, the corresponding entropy, and how this impacts the overall energetics of protein function. The interaction of proteins with carbohydrate ligands is central to a range of biological functions. Here, we examine a classic carbohydrate interaction with an enzyme: the binding of wild-type hen egg white lysozyme (HEWL) to the natural, competitive inhibitor chitotriose. Using NMR relaxation experiments, backbone amide and side chain methyl axial order parameters were obtained across apo and chitotriose-bound HEWL. Upon binding, changes in the apparent amplitude of picosecond to nanosecond main chain and side chain motions are seen across the protein. Indeed, binding of chitotriose renders a large contiguous fraction of HEWL effectively completely rigid. Changes in methyl flexibility are most pronounced closest to the binding site, but average to only a small overall change in the dynamics across the protein. The corresponding change in conformational entropy is unfavorable and estimated to be a significant fraction of the total binding entropy.  相似文献   

13.
The backbone dynamics of the 28 residue 15N-labelled human atrial natriuretic peptide have been examined by 15N NMR methods. 15N R1, R2 and [1H]-15N NOE values were determined for the oxidised and reduced forms of the peptide (ANPox and ANPrd, respectively), and analysed using reduced spectral density mapping and an extended model-free approach. The two forms possessed correlation times for overall molecular motion of 4.7 ns and were highly flexible, with substantial contributions to relaxation processes from internal motions on picosecond to nanosecond time scales. Reduction of the Cys7-Cys23 disulphide bond to form ANPrd produced a very dynamic linear peptide with a mean overall order parameter of 0.2; the intramolecular cross-link in ANPox increased this to a mean value of 0.4. A simple model for segmental backbone motion accounted for the R2 values of both species using only two variable parameters, indicating that relaxation is dominated by interactions with sites <7 residues distant in the covalent network and that changes in the conformation of the disulphide bond lead to significant chemical exchange broadening in ANPox. The contributions of backbone dynamics to configurational entropy were determined and accounted for the different receptor binding affinities of cyclised and linear natriuretic peptides.  相似文献   

14.
Goddard Y  Korb JP  Bryant RG 《Biopolymers》2007,86(2):148-154
The (1)H nuclear magnetic relaxation dispersion profiles were measured from 10 kHz to 30 MHz as a function of temperature for polyglycine, polyalanine, polyvaline, and polyphenylalanine to examine the contributions of different side chain motions to the polypeptide proton relaxation rate constants. The spin-fracton theory for (1)H relaxation is modified to account for high frequency motions of side chains that are dynamically connected to the linear polymer backbone. The (1)H relaxation is dominated by propagation of rare disturbances along the backbone of the polymer. The side-chain dynamics cause an off-set in the field dependence of the (1)H spin-lattice relaxation rate constants which obey a power law in the Larmor frequency in the limit of low and high magnetic field strength.  相似文献   

15.
Doig AJ 《Biophysical chemistry》1996,61(2-3):131-141
The absolute Gibbs energy, enthalpy and entropy of each of the internal rotations found in protein side chains has been calculated. The calculation requires the moments of inertia of the side chains about each bond, the potential energy barrier and the symmetry number and gives the maximum possible thermodynamic consequences of restricting side chain motion when a protein folds. Hindering side chain internal rotations is unfavourable in terms of Gibbs energy and entropy; it is enthalpically favourable at 0 K. At room temperature, it is estimated that the adverse entropy of hindering buried side chain internal rotation is only 25% of the absolute entropy. The difference between absolute entropies in the folded and unfolded states gives the entropy change for folding. The estimated Gibbs energy change for restricting each residue correlates moderately well with the probability of that residue being found on the folded protein surface, rather than in the protein interior (where motion is restricted).  相似文献   

16.
Dihydrofolate reductase (DHFR) has several flexible active site loops that facilitate ligand binding and catalysis. Previous studies of backbone dynamics in several complexes of DHFR indicate that the time scale and amplitude of motion depend on the conformation of the active site loops. In this study, information on dynamics is extended to methyl-containing side chains. To understand the role of side chain dynamics in ligand binding and loop conformation, methyl deuterium relaxation rates of Escherichia coli DHFR in binary folate and ternary folate:NADP+ complexes have been measured, together with chi(1) rotamer populations for threonine, isoleucine, and valine residues, determined from measurements of 3J(CgammaCO) and 3J(CgammaN) coupling constants. The results indicate that, in addition to backbone motional restriction in the adenosine-binding site, side chain flexibility in the active site and the surrounding active site loops is diminished upon binding NADP+. Resonances for several methyls in the active site and the surrounding active site loops were severely broadened in the folate:NADP+ ternary complex, suggesting the presence of motion on the chemical shift time scale. The side chains of Ile14 and Ile94, which pack against the nicotinamide and pterin rings of the cofactor and substrate, respectively, exhibit rotamer disorder in the ternary folate:NADP+ complex. Conformational fluctuations of these side chains may play a role in transition state stabilization; the observed line broadening for Ile14 suggests motions on a microsecond/millisecond time scale.  相似文献   

17.
The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.  相似文献   

18.
Backbone and side chain dynamics of mutant calmodulin-peptide complexes   总被引:1,自引:0,他引:1  
Igumenova TI  Lee AL  Wand AJ 《Biochemistry》2005,44(38):12627-12639
The mechanism of long-range coupling of allosteric sites in calcium-saturated calmodulin (CaM) has been explored by characterizing structural and dynamics effects of mutants of calmodulin in complex with a peptide corresponding to the smooth muscle myosin light chain kinase calmodulin-binding domain (smMLCKp). Four CaM mutants were examined: D95N and D58N, located in Ca2+-binding loops; and M124L and E84K, located in the target domain-binding site of CaM. Three of these mutants have altered allosteric coupling either between Ca2+-binding sites (D58N and D95N) or between the target- and Ca2+-binding sites (E84K). The structure and dynamics of the mutant calmodulins in complex with smMLCKp were characterized using solution NMR. Analysis of chemical shift perturbations was employed to detect largely structural perturbations. 15N and 2H relaxation was employed to detect perturbations of the dynamics of the backbone and methyl-bearing side chains of calmodulin. The least median squares method was found to be robust in the detection of perturbed sites. The main chain dynamics of calmodulin are found to be largely unresponsive to the mutations. Three mutants show significantly perturbed dynamics of methyl-bearing side chains. Despite the pseudosymmetric location of Ca2+-binding loop mutations D58N and D95N, the dynamic response of CaM is asymmetric, producing long-range perturbation in D58N and almost none in D95N. The mutations located at the target domain-binding site have quite different effects. For M124L, a local perturbation of the methyl dynamics is observed, while the E84K mutation produces a long-range propagation of dynamic perturbations along the target domain-binding site.  相似文献   

19.
The signal transduction protein phospholipase C-gamma1 (PLC-gamma1) is activated when its C-terminal SH2 domain (PLCC) binds the phosphorylated Tyr-1021 site (pTyr-1021) in the beta-platelet-derived growth factor receptor (PDGFR). To better understand the contributions that dynamics make to binding, we have used NMR relaxation experiments to investigate the motional properties of backbone amide and side chain methyl groups in a peptide derived from the pTyr-1021 site of PDGFR, both free and in complex with the PLCC SH2 domain. The free peptide has relaxation properties that are typical for a small, unstructured polymer, while the backbone of the bound peptide is least flexible for residues in the central portion of the binding site with the amplitude of pico- to nanosecond time scale motions increasing toward the C-terminus of the peptide. The increase in large amplitude motion toward the end of the pY1021 peptide is consistent with the bound peptide existing as an ensemble of states with C-terminal residues having the broadest distribution of backbone conformations, while residues in the central binding site are the most restricted. Deuterium spin relaxation experiments establish that the protein-peptide interface is highly dynamic, and this mobility may play an important role in modulating the affinity of the interaction.  相似文献   

20.
We have determined the relative magnitudes of the intra- and intermolecular contributions to the nuclear magnetic relaxation rates of the methylene protons of the hydrocarbon chains in phosphatidylcholine bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). These measurements have been made by the isotopic dilution method using deuterated phosphatidylcholines containing fully deuterated hydrocarbon chains. The results showed that both the methylene linewidths and the spin-lattice relaxation rates are dominated by intramolecular dipolar interactions. Both the intra- and intermolecular contributions to the spin-lattice relaxation rate were found to decrease with increasing temperature and to exhibit a frequency dependence, the rates being higher at the lower NMR frequency in both cases. These observations indicate that both intra- and intermolecular dipolar interactions are modulated by anisotropic motions. In the case of the intermolecular dipolar fields, it is proposed that they are modulated both by the rapid rotational isomerization of the hydrocarbon chains as well as by lateral diffusion of the lipid molecules. That the hydrocarbon chain motion must be fairly effective in effecting efficient spin-lattice relaxation is evident from the negligible intramolecular interchain contribution to the relaxation found in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号