首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Eukaryotic low-molecular-weight protein tyrosine phosphatases (LMW PTPs) contain a conserved serine, a histidine with an elevated pKa, and an active site asparagine that together form a highly conserved hydrogen bonding network. This network stabilizes the active site phosphate binding loop for optimal substrate binding and catalysis. In the phosphatase from the bovine parasite Tritrichomonas foetus (TPTP), both the conserved serine (S37) and asparagine (N14) are present, but the conserved histidine has been replaced by a glutamine residue (Q67). Site-directed mutagenesis, kinetic, and spectroscopic experiments suggest that Q67 is located near the active site and is important for optimal catalytic activity. Kinetic experiments also suggest that S37 participates in the active site/hydrogen bonding network. Nuclear magnetic resonance spectroscopy was used to determine the three-dimensional structure of the TPTP enzyme and to further examine the roles of S37 and Q67. The backbone conformation of the TPTP phosphate binding loop is nearly superimposable with that of other tyrosine phosphatases, with N14 existing in a strained, left-handed conformation that is a hallmark of the active site hydrogen bonding network in the LMW PTPs. As expected, both S37 and Q67 are located at the active site, but in the consensus structure they are not within hydrogen bonding distance of N14. The hydrogen bond interactions that are observed in X-ray structures of LMW PTPs may in fact be transient in solution. Protein dynamics within the active site hydrogen bonding network appear to be affected by the presence of substrate or bound inhibitors such as inorganic phosphate.  相似文献   

2.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.  相似文献   

3.
Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE.  相似文献   

4.
Protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases co-regulate cellular processes. In pathogenic bacteria, they are frequently exploited to act as key virulence factors for human diseases. Mycobacterium tuberculosis, the causative organism of tuberculosis, secretes a low molecular weight PTP (LMW-PTP), MptpA, which is required for its survival upon infection of host macrophages. Although there is otherwise no sequence similarity of LMW-PTPs to other classes of PTPs, the phosphate binding loop (P-loop) CX5R and the loop containing a critical aspartic acid residue (D-loop), required for the catalytic activity, are well conserved. In most high molecular weight PTPs, ligand binding to the P-loop triggers a large conformational reorientation of the D-loop, in which it moves ∼10 Å, from an “open” to a “closed” conformation. Until now, there have been no ligand-free structures of LMW-PTPs described, and hence the dynamics of the D-loop have remained largely unknown for these PTPs. Here, we present a high resolution solution NMR structure of the free form of the MptpA LMW-PTP. In the absence of ligand and phosphate ions, the D-loop adopts an open conformation. Furthermore, we characterized the binding site of phosphate, a competitive inhibitor of LMW-PTPs, on MptpA and elucidated the involvement of both the P- and D-loop in phosphate binding. Notably, in LMW-PTPs, the phosphorylation status of two well conserved tyrosine residues, typically located in the D-loop, regulates the enzyme activity. PtkA, the kinase complementary to MptpA, phosphorylates these two tyrosine residues in MptpA. We characterized the MptpA-PtkA interaction by NMR spectroscopy to show that both the P- and D-loop form part of the binding interface.  相似文献   

5.
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.  相似文献   

6.
Protein tyrosine phosphatases (PTPs) comprise a superfamily of enzymes that control a diverse array of signal transduction pathways. However, the function and regulation of many of these enzymes remain undefined. Previous studies have shown that the optimal tyrosine phosphorylation response to various exogenous stimuli requires the production of reactive oxygen species (ROS). It has been proposed that ROS might transiently inactivate inhibitory PTPs, thus facilitating tyrosine phosphorylation-dependent signaling. Interestingly, the unique chemistry of the invariant, active site Cys residue located in the signature motif renders it highly susceptible to oxidation, leading to the inactivation of PTPs. We have developed a novel strategy to identify those PTPs that are oxidized and therefore, inactivated in response to extracellular stimuli. Iodoacetic acid (IAA) was used to alkylate selectively the thiolate anion of the active site Cys in the reduced PTPs. In contrast, any PTPs in which the active site Cys had been oxidized in response to the stimulus were resistant to alkylation. Following this key step to differentiate between the two pools of PTPs, the oxidized phosphatases were reduced back to the active state during the process of a standard in-gel PTP activity assay. This novel technique revealed, for the first time, that multiple cellular PTPs were indeed oxidized and inactivated in response to exogenous hydrogen peroxide. We have used this technique extensively to show that the ligand-stimulated production of intracellular hydrogen peroxide reversibly regulates the activity of specific PTPs in vivo. By defining the precise PTP targets of intracellular oxidants, the mechanistic details of signal transduction can be delineated. Due to the potential use of this method in finding the molecular targets of intracellular oxidants in diverse signaling pathways, we describe here the theoretical background and the detailed protocols of the modified in-gel PTP assay.  相似文献   

7.
The recently discovered FabV enoyl-ACP reductase, which catalyzes the last step of the bacterial fatty acid biosynthesis (FAS-II) pathway, is a promising but unexploited drug target against the reemerging pathogen Yersinia pestis. The structure of Y. pestis FabV in complex with its cofactor reveals that the enzyme features the common architecture of the short-chain dehydrogenase reductase superfamily, but contains additional structural elements that are mostly folded around the usually flexible substrate-binding loop, thereby stabilizing it in a very tight conformation that seals the active site. The structures of FabV in complex with NADH and two newly developed 2-pyridone inhibitors provide insights for the development of new lead compounds, and suggest a mechanism by which the substrate-binding loop opens to admit the inhibitor, a motion that could also be coupled to the interaction of FabV with the acyl-carrier protein substrate.  相似文献   

8.
Intracellular pathogenic bacteria manipulate host signal transduction pathways to facilitate infection. Mycobacterium tuberculosis protein tyrosine phosphatases (PTPs) PtpA and PtpB are thought to be secreted into host cells and interfere with unidentified signals. To illuminate the mechanisms of regulation and substrate recognition, we determined the 1.7 A resolution crystal structure of PtpB in complex with the product phosphate. The protein adopts a simplified PTP fold, which combines features of the conventional PTPs and dual-specificity phosphatases. PtpB shows two unusual elaborations--a disordered, acidic loop and a flexible, two-helix lid that covers the active site--that are specific to mycobacterial orthologs. Biochemical studies suggest that substrate mimicry in the lid may protect the phosphatase from oxidative inactivation. The insertion and deletion of large structural elements in PtpB suggest that, outside the active site module, the PTP family is under unusual selective pressure that promotes changes in overall structure.  相似文献   

9.
The movement of a conserved protein loop (the WPD-loop) is important in catalysis by protein tyrosine phosphatases (PTPs). Using kinetics, isotope effects, and X-ray crystallography, the different effects arising from mutation of the conserved tryptophan in the WPD-loop were compared in two PTPs, the human PTP1B, and the bacterial YopH from Yersinia. Mutation of the conserved tryptophan in the WPD-loop to phenylalanine has a negligible effect on k(cat) in PTP1B and full loop movement is maintained. In contrast, the corresponding mutation in YopH reduces k(cat) by two orders of magnitude and the WPD loop locks in an intermediate position, disabling general acid catalysis. During loop movement the indole moiety of the WPD-loop tryptophan moves in opposite directions in the two enzymes. Comparisons of mammalian and bacterial PTPs reveal differences in the residues forming the hydrophobic pocket surrounding the conserved tryptophan. Thus, although WPD-loop movement is a conserved feature in PTPs, differences exist in the molecular details, and in the tolerance to mutation, in PTP1B compared to YopH. Despite high structural similarity of the active sites in both WPD-loop open and closed conformations, differences are identified in the molecular details associated with loop movement in PTPs from different organisms.  相似文献   

10.
WNK kinases comprise a small group of unique serine/threonine protein kinases that have been genetically linked to pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Here we present the structure of the kinase domain of WNK1 at 1.8 A resolution, solved in a low activity conformation. A lysine residue (Lys-233) is found in the active site emanating from strand beta2 rather than strand beta3 as in other protein kinases. The activation loop adopts a unique well-folded inactive conformation. The conformations of the P+1 specificity pocket, the placement of the conserved active site threonine (Thr-386), and the exterior placement of helix C, contribute to the low activity state. By homology modeling, we identified two hydrophobic residues in the substrate-binding groove that contribute to substrate specificity. The structure of the WNK1 catalytic domain, with its unique active site, may help in the design of therapeutic reagents for the treatment of hypertension.  相似文献   

11.
Lee DC  Zheng J  She YM  Jia Z 《The EMBO journal》2008,27(12):1758-1766
While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-A resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.  相似文献   

12.
S R Hubbard 《The EMBO journal》1997,16(18):5572-5581
The crystal structure of the phosphorylated, activated form of the insulin receptor tyrosine kinase in complex with a peptide substrate and an ATP analog has been determined at 1.9 A resolution. The activation loop (A-loop) of the kinase undergoes a major conformational change upon autophosphorylation of Tyr1158, Tyr1162 and Tyr1163 within the loop, resulting in unrestricted access of ATP and protein substrates to the kinase active site. Phosphorylated Tyr1163 (pTyr1163) is the key phosphotyrosine in stabilizing the conformation of the tris-phosphorylated A-loop, whereas pTyr1158 is completely solvent-exposed, suggesting an availability for interaction with downstream signaling proteins. The YMXM-containing peptide substrate binds as a short anti-parallel beta-strand to the C-terminal end of the A-loop, with the methionine side chains occupying two hydrophobic pockets on the C-terminal lobe of the kinase. The structure thus reveals the molecular basis for insulin receptor activation via autophosphorylation, and provides insights into tyrosine kinase substrate specificity and the mechanism of phosphotransfer.  相似文献   

13.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   

14.
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson-Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.  相似文献   

15.
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.  相似文献   

16.
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.  相似文献   

17.
Protein tyrosine phosphatases PTP-SL and PTPBR7 are isoforms belonging to cytosolic membrane-associated and to receptor-like PTPs (RPTPs), respectively. They represent a new family of PTPs with a major role in activation and translocation of MAP kinases. Specifically, the complex formation between PTP-SL and ERK2 involves an unusual interaction leading to the phosphorylation of PTP-SL by ERK2 at Thr253 and the inactivating dephosphorylation of ERK2 by PTP-SL. This interaction is strictly dependent upon a kinase interaction motif (KIM) (residues 224-239) situated at the N terminus of the PTP-SL catalytic domain. We report the first crystal structure of the catalytic domain for a member of this family (PTP-SL, residues 254-549, identical with residues 361-656 of PTPBR7), providing an example of an RPTP with single cytoplasmic domain, which is monomeric, having an unhindered catalytic site. In addition to the characteristic PTP-core structure, PTP-SL has an N-terminal helix, possibly orienting the KIM motif upon interaction with the target ERK2. An unusual residue in the catalytically important WPD loop promotes formation of a hydrophobically and electrostatically stabilised clamp. This could induce increased rigidity to the WPD loop and therefore reduced catalytic activity, in agreement with our kinetic measurements. A docking model based on the PTP-SL structure suggests that, in the complex with ERK2, the phosphorylation of PTP-SL should be accomplished first. The subsequent dephosphorylation of ERK2 seems to be possible only if a conformational rearrangement of the two interacting partners takes place.  相似文献   

18.
Protein-tyrosine phosphatases (PTPs) are important for the control of proper cellular tyrosine phosphorylation. Despite the large number of PTPs encoded in the human genome and the emerging roles played by PTPs in human diseases, a detailed understanding of the role played by PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific inhibitors. Such inhibitors could serve as useful tools for determining the physiological functions of PTPs and may constitute valuable therapeutics in the treatment of several human diseases. However, because of the highly conserved nature of the active site, it has been difficult to develop selective PTP inhibitors. By taking an approach to tether together two small ligands that can interact simultaneously with the active site and a unique proximal noncatalytic site, we have recently acquired Compound 2 (see Fig. 1), the most potent and selective PTP1B inhibitor identified to date, which exhibits several orders of magnitude selectivity in favor of PTP1B against a panel of PTPs. We describe an evaluation of the interaction between 2 and its analogs with PTP1B and its site-directed mutants selected based on hydrogen/deuterium exchange of PTP1B backbone amides in the presence and absence of 2. We have established the binding mode of Compound 2 and identified 12 PTP1B residues that are important for the potency and selectivity of Compound 2. Although many of the residues important for Compound 2 binding are not unique to PTP1B, the combinations of all contact residues differ between PTP isozymes, which suggest that the binding surface defined by these residues in individual PTPs determines inhibitor selectivity. Our results provide structural information toward understanding of the molecular basis for potent and selective PTP1B inhibition and further establish the feasibility of acquiring potent, yet highly selective, PTP inhibitory agents.  相似文献   

19.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

20.
Protein tyrosine phosphatases (PTPs) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. PTPs are also implicated in a wide variety of other disorders, including cancer. Significant progress has been made in identifying small molecules that simultaneously bind both the active site and a unique adjacent site that enables specific inhibition of individual PTP isoenzymes. As a consequence, there are compelling reasons to believe that PTP inhibitors may ultimately serve as powerful therapeutic weapons in our arsenal for battling human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号