首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear transfer was used to study nuclear reprogramming of fetal diploid bovine germ cells collected at two stages of the fetal development. In the first case, germ cells of both sexes were collected during their period of intragonadal mitotic multiplication at 48 days post co?tum (d.p.c.). In the second case, only male germ cells were collected after this period, between 105 and 185 d.p.c. Isolated germ cells were fused with enucleated oocytes. Reconstituted embryos were cultured in vitro and those reaching the compacted morula or blastocyst stage were transferred into synchronous recipient heifers. Of 511 reconstituted embryos with 48 d.p.c. germ cells (309 males and 202 females), 48% (247/511 ) cleaved; 2.7% (14/511 ) reached the compacted morula stage and 8 of them the blastocyst stage (1.6%). No difference was observed between sexes. All 14 compacted morulae/blastocysts were transferred into 6 recipients and one pregnancy was initiated. This recipient was slaughtered at Day 35 and an abnormal conceptus (extended trophectoderm and degenerated embryo) was collected. Its male sex, genetically determined, corresponded to that of donor fetus. Of 380 reconstituted embryos with male 105 to 185 d.p.c. germ cells, 72.1% (274/380 ) cleaved, 2.1% (8 380 ) reached the compact morula stage and 7 of these the blastocyst stage (1.8%). Three blastocysts and one morula were transferred into 4 recipients. Two became pregnant at Day 21 but only one at Day 35 which aborted around Day 40. Our results show that the nucleus of diploid bovine germ cells of both sexes can be reprogrammed. However, in the absence of further development of these reconstituted embryos, nuclear totipotency of bovine diploid germ cells remains to be evidenced.  相似文献   

2.
Generation of mouse chimeras is useful for the elucidation of gene function. In the present report, we describe a new technique for the production of chimeras by injection of R1 embryonic stem (ES) cells into the perivitelline space of one-cell stage mouse embryos. One-cell embryos are injected with 2–6 ES cells into the perivitelline space under the zona pellucida without laser-assistance. Our embryo culture experiments reveal that ES cells injected at the one-cell stage embryo start to be incorporated into the blastomeres beginning at the 8-cell stage and form a chimeric blastocyst after 4 days. We have used this approach to successfully produce a high rate of mouse chimeras in two different mouse genetic backgrounds permitting the establishment of germ line transmitters. This method allows for the earlier introduction of ES cells into mouse embryos, and should free up the possibility of using frozen one-cell embryos for this purpose.  相似文献   

3.
The developmental potential of bovine fetal germ cells was evaluated using nuclear transfer. Male and female germ cells at three stages of fetal development from 50- to 57-, 65- to 76- or 95- to 105-day-old fetuses were fused to enucleated oocytes 2 to 4 hr prior to activation with 7% ethanol (5 min) followed by 5 hr culture in 10 microg/ml cycloheximide and 5 microg/ml cytochalasin B. The in vitro development of nuclear transfer embryos derived from germ cells was compared with those derived from embryonic cells (blastomeres from day 5 or day 6 embryos). Blastocyst rate (38%) obtained with germ cells from 50- to 57-day-old fetuses tended to be higher than when using germ cells from 65- to 76- or 95- to 105-day-old fetuses (23% and 20%, respectively). Within each stage of fetal development, the proportion of blastocysts derived from male germ cells tended to be higher than that obtained with female germ cells, but due to the high variation between individual fetuses this difference was not significant. With the post activation procedure used in this study, germ cells from 50- to 57-day-old fetuses supported the development of nuclear transfer embryos to the blastocyst stage significantly (P<0.05) better than nuclei of embryonic cells (38% vs. 3%). After transfer of blastocysts derived from germ cells of 50-to 57- and 65- to 76-day fetuses, respectively, 45% (5/11) and 50% (3/6) recipients were pregnant on day 30. The corresponding pregnancy rates on day 90 were 36% (4/11) and 17%(1/6). One live male calf was delivered by cesarean section at day 277 of gestation. Our results show that nuclei of bovine fetal germ cells may successfully be reprogrammed to support full-term development of nuclear transfer embryos.  相似文献   

4.
The aim of this study was to assess development of diploid and tetraploid in vivo derived pig embryos cultured in a modified medium NCSU 37 in an atmosphere with reduced concentration of oxygen. The tetraploid embryos were produced by electrofusion of two-cell embryos that had been cultured in vitro from the one-cell stage before fusion (cultured two-cell embryos) or by fusion of freshly recovered two-cell embryos. Development to blastocyst stage of tetraploid embryos, generated from the cultured two-cell embryos was significantly inferior to the development of control one-cell embryos (29.1 +/- 9.7% versus 66.8 +/- 9.7%; P < 0.05). However, development of tetraploid embryos produced from the freshly recovered two-cell embryos and control two-cell embryos was very similar (89.9 +/- 6.1% versus 81.3 +/- 3.4%). Detection of chromosomes 1 and 10 by in situ hybridization showed that more than 85% of the cultured control embryos were diploid while 15% of the embryos were mosaic. Among the fused embryos 50% were tetraploid, 29% mosaic and 21% diploid. These data indicate that the modified medium NCSU 37 provides optimum environment for pre-implantation development of pig diploid and tetraploid embryos.  相似文献   

5.
L I Penkov  E S Platonov 《Ontogenez》1992,23(4):364-369
We studied preimplantation development in vitro and postimplantation development in vivo of diploid parthenogenetic mouse embryos of C57BL/6 and CBA strains, as well as of (CBA x C57BL/6)F1 hybrids. Development to blastocyst stage of diploid eggs obtained from C57BL/6, CBA, and hybrid mice was observed in 90, 15, and 73% cases, respectively. After implantation, C57BL/6 embryos did not develop to somite stages, while CBA and hybrid embryos reached various stages of somite formation in 45 and 30% cases, respectively. Cultivation of embryos beginning from one-cell stage in the medium containing 2% newborn calf serum increased the yield of blastocysts from 15 to 59% in CBA embryos and from 73 to 90% in hybrids; However, such effect was not observed with C57BL/6 embryos. The latest stages of development observed in CBA and hybrid diploid parthenogenetic embryos were 33-35 somites and 25-30 somites, respectively. Imprinting patterns in chromosomes of CBA and C57BL/6 gametes are discussed.  相似文献   

6.
Microinsemination is the technique of delivering male germ cells directly into oocytes. The efficiency of fertilization after microinsemination and subsequent embryo development may vary with the animal species and male germ cells used. The present study was undertaken to observe the in vitro and in vivo developmental ability of rabbit embryos following microinsemination with male germ cells at different stages. First, we assessed their oocyte-activating capacity by injecting them into mouse and rabbit oocytes. The majority of mouse oocytes were activated irrespective of the type of rabbit male germ cell injected (61-77%), whereas rabbit oocytes were activated differently according to the type of male germ cells (89%, 75%, and 29% were activated by spermatozoa, elongated spermatids, and round spermatids, respectively; P < 0.05). After 120 hr in culture, 66%, 45%, and 13%, respectively, of these activated rabbit oocytes (pronuclear eggs) developed into blastocysts (P < 0.05). Additional electric pulse stimulation of round spermatid-injected oocytes increased the blastocyst rate to 43%. After 24 hr in culture, some four to eight cell embryos were transferred into the oviducts of pseudopregnant females. Normal pups were born from spermatozoa and elongated spermatids, but not from round spermatids. Karyotypic analysis at the morula/blastocyst stage revealed that the majority of round spermatid-derived embryos had abnormal ploidy (8 out of 12 embryos). Our study indicates that rabbit male germ cells acquire the ability to activate oocytes and to support subsequent embryo development as they undergo spermiogenesis. As these differential developmental patterns are similar to those reported for humans in vitro and in vivo, rabbits may provide an alternative small animal model for studying the biological nature and molecular basis of human microinsemination techniques, especially those using immature male germ cells.  相似文献   

7.
Nuclear transplantation of male primordial germ cells in the mouse   总被引:2,自引:0,他引:2  
We examined the developmental ability of enucleated eggs receiving embryonic nuclei and male primordial germ cells (PGCs) in the mouse. Reconstituted eggs developed into the blastocyst stage only when an earlier 2-cell nucleus was transplanted (36%) but very rarely if the donor nucleus was derived from a later 2-cell, 8-cell, or inner cell mass of a blastocyst (0-3%). 54-100%, 11-67%, 6-43% and 6-20% of enucleated eggs receiving male PGCs developed to 2-cell, 4-cell, 8-cell and blastocyst stage, respectively, in culture. The overall success rate when taking into account the total number of attempts at introducing germ cells was actually 0-6%. Live fetuses were not obtained after transfer of reconstituted eggs to recipients, although implantation sites were observed. The developmental ability of reconstituted eggs in relation to embryonic genome activation and genomic imprinting is discussed.  相似文献   

8.
Diandric and digynic triploid mouse embryos were isolated in the morning on day 10 of gestation. The embryos were separated from their extraembryonic membranes, and the latter were analysed cytogenetically by G-banding to establish the ploidy and sex chromosome constitution of these embryos. The diandric triploid embryos were produced by the technique of nuclear micromanipulation. Females were mated with male mice with a morphologically distinguishable "marker" chromosome to confirm the diandric status of these embryos. Digynic triploid and normal diploid embryos were isolated from LT/Sv strain females. These females spontaneously ovulate both primary and secondary oocytes, which are fertilisable and give rise to digynic triploid and normal diploid embryos, respectively. All the embryos were serially sectioned and processed in order to demonstrate the presence of alkaline phosphatase enzyme activity. This histochemical technique allowed primordial germ cells to be readily recognised, due to their characteristic location, cellular morphology, and staining appearance. Primordial germ cells were found in all the embryos studied, being located within the visceral yolk sac, at the base of the allantois, and/or in association with the wall or mesentery of the hindgut. The total number of germ cells present was established in nine diandric triploids and in five digynic triploids. The findings presented here represent the first demonstration that primordial germ cells can differentiate in either diandric or digynic triploid mammalian embryos.  相似文献   

9.
This study examined bovine cloning strategies that may be used for gene targeting in animals of known phenotypic traits. Fibroblast cells derived from an adult and a fetus of the same genotype were transfected with a plasmid (pEGFP-N1) containing the enhanced green fluorescence protein and neomycin-resistant genes. After transfecting 2 x 10(5) cells, 49 adult and 35 fetal cell colonies were obtained. Green fluorescence expression was observed in 35 out of 49 (71.4%) adult clones and in 30 out of 35 (85.7%) fetal clones. Developmental rates to the blastocyst stage following nuclear transfer (NT) did not differ among nontransfected cell lines (adult, 20.0%; NT fetal, 18.3%), whereas developmental rates were significantly lower for adult and fetal cell lines expressing enhanced green fluorescent protein (EGFP; 11.3% and 6.4%, respectively, P < 0.05). However, there was no decrease in NT developmental rates (19.8%) when donor nuclei from EGFP-transfected cell lines not expressing EGFP but retaining neomycin-resistant gene expression were used as donor nuclei. NT embryos from adult and fetal cell lines had similar morphology, cell number, and ploidy. The results indicated that adult and NT fetal cells (identical genotype) can complete clonal propagation, including transfection and selection, and can be used to produce transgenic NT embryos; however, a possible deleterious effect of EGFP on embryo development should be considered in future gene targeting studies.  相似文献   

10.
In a previous study of mouse tetraploid<-->diploid chimaeric blastocysts, tetraploid cells were found to be more abundant in the trophectoderm than the inner cell mass (ICM) and more abundant in the mural trophectoderm than the polar trophectoderm. This non-random allocation of tetraploid cells to different regions of the chimaeric blastocyst may contribute to the restricted tissue distribution seen in post-implantation stage tetraploid<-->diploid chimaeras. However, the tetraploid and diploid embryos that were aggregated together differed in several respects: the tetraploid embryos had fewer cells and these cells were bigger and differed in ploidy. Each of these factors might underlie a non-random allocation of tetraploid cells to the chimaeric blastocyst. A combination of micromanipulation and electrofusion was used to produce two series of chimaeras that distinguished between the effects of cell size and ploidy on the allocation of cells to different tissues in chimaeric blastocysts. When aggregated cells differed in cell size but not ploidy, the derivatives of the larger cell contributed significantly more to the mural trophectoderm and polar trophectoderm than the ICM. When aggregated cells differed in ploidy but not cell size, the tetraploid cells contributed significantly more to the mural trophectoderm than the ICM. In both experiments the contributions to the polar trophectoderm tended to be intermediate between those of the mural trophectoderm and ICM. These experiments show that both the larger size and increased ploidy of tetraploid cells could have contributed to the non-random cell distribution that was observed in a previous study of tetraploid<-->diploid chimaeric blastocysts.  相似文献   

11.
兔转基因单细胞克隆株的分离培养及其染色体倍性分析   总被引:1,自引:0,他引:1  
为检测原代二倍体细胞转基因后单细胞克隆的增殖能力及其染色体倍性稳定性,用脂质体介导的转染方法将质粒DNA pEGFP-C1(带有报告基因GFP和Neo^r)导入体外培养的兔胎儿成纤维细胞中,经G418药物筛选后,分离出73个GFP阳性细胞克隆,最后存活13个(18%),对其中9个克隆的染色体倍性进行分析,结果只有2个(22%)克隆的染色体倍性正常率在75%以上,分别为80%和75%,其余7个克隆的染色体倍性正常率均在70%以上。这表明,当使用转基因单细胞克隆株作为供核细胞产生克隆动物时,单细胞克隆的增殖代数和染色体倍性的稳定性需要进一步研究提高。  相似文献   

12.
Embryo development during in vitro culture of polyspermic porcine oocytes was investigated in the present study. After in vitro fertilization (IVF) of in vitro matured oocytes, putative zygotes were centrifuged to visualize pronuclei. Two pronuclear (2PN) and poly-pronuclear (PPN) zygotes were selected and cultured in vitro. Their development to the blastocyst stage and total cell numbers, dead cell rates and ploidy at the blastocyst stage and morphology of resultant embryos after first cleavage were compared. A cleavage rate of PPN embryos was lower than that of 2PN (61.3% and 82.2%, respectively), however, the ability of cleaved embryos to develop to the blastocyst stage did not differ between the PPN and the 2PN groups (22.4% and 32.9%, respectively). Also there was no difference in total cell numbers and rates of dead cells between PPN and 2PN blastocysts. The majority of blastocysts in 2PN group were found to be diploid. In contrast, blastocysts in PPN group showed heterogeneous status in their ploidy including polyploidy and mixoploidy, whereas a remarkable proportion (31.3%) of them was found to be diploid. After the first cleavage (at 36 h after IVF), there was no difference in the number of nuclei/embryo between the two groups, nevertheless embryos in PPN group had significantly higher numbers of blastomeres than that of embryos in 2PN group, mainly due to an increased frequency of anuclear blastomeres. The present results indicate that correction of embryo ploidy in polyspermic embryos can occur during IVC. Nevertheless the frequency of partial fragmentation in polyspermic embryos is increased.  相似文献   

13.
Contents     
Colcemid at the dose level of 0.37 mg/kg/day was injected intraperitoneally to 3 sexually active chicken males for 3 consecutive days. 10–12 days after the first colcemid injection, 14–25% of the sperm population in the semen samples from the treated males was found to be diploid in DNA content by flow microfluorometric analysis. Cytogeneic and developmental analyses on early embryos indicate that, during the process of spermatogenesis, the male germ cells are most susceptible to colcemid treatment 1-–12 days prior to the maturationn of the spermatozoa which is equivalent to the primary through secondary spermatocyte stages in chicken males. By the application of an extremely unequal chromosomal translocation as a cytological marker of parentage, it is confirmed that the diploid sperm induced are capable of uniting with a normal haploid or diploid egg to produce a triploid or tetraploid zygote.  相似文献   

14.
Cloned bovine embryos were produced at the blastocyst stage. Prior to enucleation, oocytes were freed from the zona pellucida. Fibroblasts isolated from the bovine fetus were used as nuclear donors. Pairs of fetal fibroblasts and enucleated oocytes (cytoplasts) were glued in phytohemagglutinin solution under a binocular microscope. The subsequent electrofusion of 39 fetal fibroblast-cytoplast pairs yielded 36 reconstructed one-cell embryos (92.3%). After culturing in synthetic oviduct fluid for 7.5 days, seven cloned embryos developed to the blastocyst stage (19.4%) and six blastocysts were considered fit for transplantation. The applied technique of bovine embryo growth allowed 31.1% zona-free oocytes parthenogenetically activated by to reach the blastocyst stage.  相似文献   

15.
Triploid suspensions generally grew more vigorously in modified MS medium with 2,4-D than those of diploids. The embryogenic potential of 26-month-old auxin-dependent suspension cultures depended on the line. Neither triploid nor diploid BOR (Borszczagowski line) were able to produce somatic embryos. Similarly, 12–20-month-old cytokinin-dependent suspensions from the same triploid line were not capable of regeneration. Only aggregates from 26-month-old auxin-dependent suspension of triploid line 603 differentiated into somatic embryos. In contrast, 18-month-old diploid and triploid liquid cultures of meristematic clumps (LMC) of BOR retained their regeneration potential. The ploidy level of triploid and diploid auxin-dependent suspension cultures was stable during the first 8 months. However, the ploidy level of triploids remained stable over 26 months of culture, whereas 66.7% of diploid cultures underwent chromosome doubling. No ploidy changes were observed among plants regenerated from 18-month-old LMC. Our data suggest that loss of embryogenic potential in suspension culture was independent of ploidy level.  相似文献   

16.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.  相似文献   

17.
Kato Y  Tsunoda Y 《Theriogenology》1992,37(4):769-778
Mouse fetal germ cells were fused with enucleated blastomeres of two-cell embryos. Donor germ cells were obtained from fetuses of albino CD-1 strain or pigmented F(1) (C57BL x CBA) female mice mated with the same strain males at 11.5 to 16.5 days post coitum. Recipient two-cell embryos, which were of a different strain from the donors, were obtained at 37 to 42 hours (Group 1), 42 to 47 hours (Group 2), and 47 to 52 hours (Group 3) after treatment with human chorionic gonadotropin (hCG). After removing the nucleus from one two-cell blastomere, a single germ cell was fused with the enucleated blastomere using the Sendai virus; the second blastomere was left intact. The reconstituted embryos were cultured for 3 days in vitro, to examine their developmental capacity. The fused blastomeres in Groups 1 and 2 did not divide, but a few transplanted blastomeres in Group 3 divided several times, and some of them developed into normal blastocysts. Most embryos developed into blastocysts from one blastomere, with an undivided blastomere remaining. Embryos developing into normal blastocysts or blastocysts with small blastomeres were transferred to the oviducts of Day-1 or the uteri of Day-3 pregnant albino CD-1 mice. None of the young showed any contribution of the germ cells, judging by the eye and coat colors and by the germ cells in the germ line following mating with albino mice. Possible reasons for failure of pluripotency of the germ cells are discussed here.  相似文献   

18.
A study of meiosis in chimeric mouse fetal gonads   总被引:1,自引:0,他引:1  
The influence of somatic environment on the onset and progression of meiosis in fetal germ cells was studied in chimeric gonads produced in vitro by dissociation-reaggregation experiments. Germ cells isolated from testes or ovaries of 11.5-13.5 days post coitum (dpc) CD-1 mouse embryos were loaded with the fluorescent supravital dye 5-6 carboxyfluorescein diacetate succinimyl ester (CFSE) and mixed with a cell suspension obtained by trypsin-EDTA treatment of gonads of various ages and of the same or opposite sex. Whereas 11.5 dpc donor germ cells appeared unable to survive in the chimeric gonads obtained, about 76% of the CFSE-labeled female germ cells obtained from 12.5 dpc donor embryos (premeiotic germ cells) found viable within host ovarian tissues showed a meiotic nucleus. In contrast, a smaller number (about 19%) were in meiosis in chimeric testes. None or very few of donor male germ cells entered meiosis in testes or ovarian host tissues. Aggregation of meiotic 13.5 dpc female germ cells with testis tissues from 13.5 to 14.5 dpc embryos resulted in inhibition of meiotic progression and pyknosis in most donor germ cells. These results support the existence of a meiosis-preventing substance or a factor causing oocyte degeneration in the fetal mouse testis, but not of a meiosis-inducing substance in the fetal ovary.  相似文献   

19.
Studies were made on the contribution of haploid-derived parthenogenetic cells to haploid parthenogenetic ? fertilized chimeric embryos on day 9 and 10 of pregnancy. In most cases, the contribution of haploid-derived parthenogenetic cells to embryonic tissues was higher than that to extraembryonic tissues. The contribution of haploid-derived cells to embryonic tissues of some chimeras was more than 90%. Chromosomal analysis showed that actively dividing cells in most chimeric embryos contained about 40 chromosomes, indicating that they were diploidized, as haploid parthenogenetic blastocysts have about 20 chromosomes. Results suggested that haploid-derived parthehogenetic cells in chimeric embryos diploidized spontaneously after the blastocyst stage. These cells were capable of differentiating into most cell types of embryonic tissues, but scarcely differentiated into extraembryonic tissues of day 9 embryos. The fate of haploid-derived parthenogenetic cells during postimplantational development was similar to that of diploid parthenogenetic cells that had been diploidized experimentally in the one-cell stage.  相似文献   

20.
The cell cycle of donor cells as a major factor that affects cloning efficiency remains debatable. G2/M phase cells as a donor can successfully produce cloned animals, but a minimal amount is known regarding nuclear remodeling events. In this study, porcine fetal fibroblasts (PFFs) were carefully synchronized at G1 or M phase as donor cells. Most of the cloned embryos reconstructed from PFFs at G1 (G1-embryos) or M (M-embryos) phase formed a pronucleus-like nucleus (PN) within 6-h post fusion (hpf), but the M-embryos formed PN earlier than the G1-embryos did. Moreover, 77.4% of the M-embryos formed two PNs, whereas the G1-embryos formed a single PN. The rate of extrusion of polar body-like structures by the M-embryos was significantly lower than that extruded by the G1-embryos (26.3% vs. 37.1%, P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号