首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study compares the dynamic mechanical properties and the contents of collagen and elastic fibers (oxytalan + elaunin + fully developed elastic fibers) of mice and rat lung strips. Resistance, elastance (E), and hysteresivity (eta) were obtained during sinusoidal oscillations. The relative amounts of blood vessel, bronchial, and alveolar walls, as well as the mean alveolar diameter were determined. In both species, resistance had a negative and E a positive dependence on frequency, whereas eta remained unchanged. Mice showed higher E and lower eta than rats. Although collagen and elastic fiber contents were similar in both groups, mice had more oxytalan and less elaunin and fully developed elastic fibers than rats. Rats showed less alveolar and more blood vessel walls and higher mean alveolar diameter than mice. In conclusion, mice and rats present distinct tissue mechanical properties, which are accompanied by specific extracellular fiber composition.  相似文献   

2.
We tested the hypothesis that matrix glycosaminoglycans contribute to lung tissue viscoelasticity. We exposed lung parenchymal strips to specific degradative enzymes (chondroitinase ABC, heparitinase I, and hyaluronidase) and determined whether the mechanical properties of the tissue were affected. Subpleural parenchymal strips were obtained from Sprague-Dawley rats and suspended in a Krebs-filled organ bath. One end of the strip was attached to a force transducer and the other to a servo-controlled lever arm that effected sinusoidal oscillations. Recordings of tension and length at different amplitudes and frequencies of oscillation were recorded before and after enzyme exposure. Resistance, dynamic elastance, and hysteresivity were estimated by fitting the equation of motion to changes in tension and length. Quasi-static stress-strain curves were also obtained. Exposure to chondroitinase and heparitinase I caused significant increases in hysteresivity, no decrement in resistance, and similar decreases in dynamic elastance relative to control strips exposed to Krebs solution only. Conversely, measures of static elastance were different in treated versus control strips. Hyaluronidase treatment did not alter any of the mechanical measures. These data demonstrate that digestion of chondroitin sulfate and heparan sulfate alters the mechanical behavior of lung parenchymal tissues.  相似文献   

3.
We developed a network model in an attempt to characterize heterogeneity of tissue elasticity of the lung. The model includes a parallel set of pathways, each consisting of an airway resistance, an airway inertance, and a tissue element connected in series. The airway resistance, airway inertance, and the hysteresivity of the tissue elements were the same in each pathway, whereas the tissue elastance (H) followed a hyperbolic distribution between a minimum and maximum. To test the model, we measured the input impedance of the respiratory system of ventilated normal and emphysematous C57BL/6 mice in closed chest condition at four levels of positive end-expiratory pressures. Mild emphysema was developed by nebulized porcine pancreatic elastase (PPE) (30 IU/day x 6 days). Respiratory mechanics were studied 3 wk following the initial treatment. The model significantly improved the fitting error compared with a single-compartment model. The PPE treatment was associated with an increase in mean alveolar diameter and a decrease in minimum, maximum, and mean H. The coefficient of variation of H was significantly larger in emphysema (40%) than that in control (32%). These results indicate that PPE treatment resulted in increased time-constant inequalities associated with a wider distribution of H. The heterogeneity of alveolar size (diameters and area) was also larger in emphysema, suggesting that the model-based tissue elastance heterogeneity may reflect the underlying heterogeneity of the alveolar structure.  相似文献   

4.
The nonlinearity of lung tissues and airways was studied in six anesthetized and paralyzed open-chest dogs by means of 0.1-Hz sinusoidal volume forcing at mean transpulmonary pressures (Ptp) of 5 and 10 cmH2O. Lung resistance (RL) and elastance (EL) were determined in a 32-fold range (15-460 ml) of tidal volume (VT), both by means of spectrum analysis at the fundamental frequency and with conventional time-domain techniques. Alveolar capsules were used to separate the tissue and airway properties. A very small amplitude dependence was found: with increasing VT, the frequency-domain estimates of RL decreased by 5.3 and 14%, whereas EL decreased by 20 and 22% at Ptp = 5 and 10 cmH2O, respectively. The VT dependences of the time-domain estimates of RL were higher: 10.5 and 20% at Ptp = 5 and 10 cmH2O, respectively, whereas EL remained the same. The airway resistance increased moderately with flow amplitude and was smaller at the higher Ptp level. Analysis of the harmonic distortions of airway opening pressure and the alveolar pressures indicated that nonlinear harmonic production is moderate even at the highest VT and that VT dependence is homogeneous throughout the tissues. In three other dogs it was demonstrated that VT dependences of RL and EL were similar in situ and in isolated lungs at both Ptp levels.  相似文献   

5.
To investigate the frequency-dependent changes of lung tissue mechanics during pneumoconstriction, we studied guinea pig subpleural lung strips submitted to a multisinusoidal deformation composed of five equal-amplitude discrete frequencies ranging between 0.2 and 3.1 Hz. Strips were submitted to graded step stretch changes (SS) and to graded histamine stimulation (HS) in organ bath. Elastance, resistance, and hysteresivity were calculated at each frequency. The model accounting for the relationship between the complex Young's modulus and the angular frequency showed that the constant-phase hypothesis was satisfied in SS condition. However, HS modified all parameters in the model, and the constant-phase hypothesis could be rejected for HS of 10(-5) and 10(-3) M. The hysteresivity time course changed with angular frequency, but differently in the HS and SS conditions. Our results agree with a serial disposition of the connective matrix and contractile system in lung tissue. We conclude that pneumoconstriction induced significant structural changes at the level of the connective matrix.  相似文献   

6.
Antenatal exposure to intra-amniotic (i.a.) endotoxin initiates a complex series of events, including an inflammatory cascade, increased surfactant production, and alterations to lung structure. Using the low frequency forced oscillation technique as a sensitive tool for measurement of respiratory impedance, we aimed to determine which factors contributed most to measured changes in lung mechanics. Respiratory impedance data obtained from sedated preterm lambs exposed to either i.a. injection with saline or 20 mg of endotoxin 1, 2, 4, and 15 days before delivery at 125 days gestation were studied, and association with indexes of standard lung morphometry, inflammatory response, and alveolar surfactant-saturated phosphatidylcholine (Sat PC) pool size was demonstrated. Reduction in tissue impedance with increasing interval between exposure and delivery was evident as early as 4 days after i.a. endotoxin injection, coinciding with resolution of inflammatory reaction, increased alveolar surfactant pools, and contribution of alveolar ducts to the parenchymal fraction, and a later decrease in the tissue component of the parenchymal fraction. Decreases in tissue damping (resistance) were more marked than decreases in tissue elastance. Log alveolar Sat PC accounted for most variability in tissue damping (88.9%) and tissue elastance (73.4%), whereas tissue fraction contributed 2 and 6.4%, respectively. The alveolar Sat PC pool size was the sole factor contributing to change in tissue hysteresivity. No changes were observed in airway resistance. Despite the complex cascade of events initiated by antenatal endotoxin exposure, variability in lung tissue mechanics is associated primarily with changes in alveolar Sat PC pool and lung morphology.  相似文献   

7.
We measured lung impedance in rats in closed chest (CC), open chest (OC), and isolated lungs (IL) at four transpulmonary pressures with a optimal ventilator waveform. Data were analyzed with an homogeneous linear or an inhomogeneous linear model. Both models include tissue damping and elastance and airway inertance. The homogeneous linear model includes airway resistance (Raw), whereas the inhomogeneous linear model has a continuous distribution of Raw characterized by the mean Raw and the standard deviation of Raw (SDR). Lung mechanics were compared with tissue strip mechanics at frequencies and operating stresses comparable to those during lung impedance measurements. The hysteresivity (eta) was calculated as tissue damping/elastance. We found that 1) airway and tissue parameters were different in the IL than in the CC and OC conditions; 2) SDR was lowest in the IL; and 3) eta in IL at low transpulmonary pressure was similar to eta in the tissue strip. We conclude that eta is primarily determined by lung connective tissue, and its elevated estimates from impedance data in the CC and OC conditions are a consequence of compartment-like heterogeneity being greater in CC and OC conditions than in the IL.  相似文献   

8.
Maturational changes in extracellular matrix and lung tissue mechanics.   总被引:3,自引:0,他引:3  
The viscoelastic properties of the pulmonary parenchyma change rapidly postparturition. We compared changes in mechanical properties with changes in tissue composition of rat lung parenchymal strips in three groups of Sprague-Dawley rats: baby (B; 10-14 days), young (Y; approximately 3 wk), and adult (A; approximately 8 wk). Strips were suspended in an organ bath, and resistance (R), elastance (E), and hysteresivity (eta) were calculated during sinusoidal oscillations before and after the addition of acetylcholine (ACh) (10(-3) M). Strips were then fixed in formalin, and sections were stained with hematoxylin and eosin, Verhoff's elastic stain, or Van Gieson's picric acid-fuchsin stain for collagen. The volume proportion of collagen (%Col), the length density of elastic fibers (L(V)/Pr(alv)), and the arithmetic mean thickness of alveolar septae (T(a)) were calculated by morphometry. Tissue was also stained for alpha-smooth muscle actin (ASMA), and the volume proportion of ASMA (%ASMA) was calculated. Hyaluronic acid (HA) was quantitated by radioimmunoassay in separate strips. R and E in B strips were significantly higher, whereas eta was significantly smaller than in Y or A strips. Changes in these parameters with ACh were greater in B strips. T(a), %ASMA, and HA were greatest in B strips, whereas %Col and L(V)/Pr(alv) were least. There were significant positive correlations between R and E vs. T(a) and between percent change in R and eta post-ACh vs. T(a) and vs. %ASMA, and significant negative correlations between R and E vs. %Col and vs. L(V)/Pr(alv) and percent increase in all three mechanical parameters post-ACh vs. %Col. These data suggest that the relatively high stiffness, R, and contractile responsiveness of parenchymal tissues observed in newborns are not directly attributable to the amount of collagen and elastic fibers in the tissue, but rather they are related to the thickened alveolar wall and the relatively greater percent of contractile cells.  相似文献   

9.
Harmonic distortion (HD) is a simple approach to analyze lung tissue nonlinear phenomena. This study aimed to characterize frequency-dependent behavior of HD at several amplitudes in lung tissue strips from healthy rats and its influence on the parameters of linear analysis. Lung strips (n = 17) were subjected to sinusoidal deformation at three different strain amplitudes (Δε) and fixed operational stress (12 hPa) among various frequencies, between 0.03 and 3 Hz. Input HD was <2% in all cases. The main findings in our study can be summarized as follows: 1) harmonic distortion of stress (HD) showed a positive frequency and amplitude dependence following a power law with frequency; 2) HD correlated significantly with the frequency response of dynamic elastance, seeming to converge to a limited range at an extrapolated point where HD=0; 3) the relationship between tissue damping (G) and HD(ω=1) (the harmonic distortion at ω=1 rad/s) was linear and accounted for a large part of the interindividual variability of G; 4) hysteresivity depended linearly on κ (the power law exponent of HD with ω); and 5) the error of the constant phase model could be corrected by taking into account the frequency dependence of harmonic distortion. We concluded that tissue elasticity and tissue damping are coupled at the level of the stress-bearing element and to the mechanisms underlying dynamic nonlinearity of lung tissue.  相似文献   

10.
Enlargement of the respiratory air spaces is associated with the breakdown and reorganization of the connective tissue fiber network during the development of pulmonary emphysema. In this study, a mouse (C57BL/6) model of emphysema was developed by direct instillation of 1.2 IU of porcine pancreatic elastase (PPE) and compared with control mice treated with saline. The PPE treatment caused 95% alveolar enlargement (P = 0.001) associated with a 29% lower elastance along the quasi-static pressure-volume curves (P < 0.001). Respiratory mechanics were measured at several positive end-expiratory pressures in the closed-chest condition. The dynamic tissue elastance was 19% lower (P < 0.001), hysteresivity was 9% higher (P < 0.05), and harmonic distortion, a measure of collagen-related dynamic nonlinearity, was 33% higher in the PPE-treated group (P < 0.001). Whole lung hydroxyproline content, which represents the total collagen content, was 48% higher (P < 0.01), and alpha-elastin content was 13% lower (P = 0.16) in the PPE-treated group. There was no significant difference in airway resistance (P = 0.7). The failure stress at which isolated parenchymal tissues break during stretching was 40% lower in the PPE-treated mice (P = 0.002). These findings suggest that, after elastolytic injury, abnormal collagen remodeling may play a significant role in all aspects of lung functional changes and mechanical forces, leading to progressive emphysema.  相似文献   

11.
Stress adaptation and low-frequency impedance of rat lungs   总被引:1,自引:0,他引:1  
At transpulmonary pressures (Ptp) of 7-12 cmH2O, pressure-volume hysteresis of isolated cat lungs has been found to be 20-50% larger than predicted from their amount of stress adaptation (J. Hildebrandt, J. Appl. Physiol. 28: 365-372, 1970). This behavior is inconsistent with linear viscoelasticity and has been interpreted in terms of plastoelasticity. We have reinvestigated this phenomenon in isolated lungs from 12 Wistar rats by measuring 1) the changes in Ptp after 0.5-ml step volume changes (initial Ptp of 5 cmH2O) and 2) their response to sinusoidal pressure forcing from 0.01 to 0.67 Hz (2 cmH2O peak to peak, mean Ptp of 6 cmH2O). Stress adaptation curves were found to fit approximately Hildebrandt's logarithmic model [delta Ptp/delta V = A - B.log(t)] from 0.2 to 100 s, where delta V is the step volume change, A and B are coefficients, and t is time. A and B averaged 1.06 +/- 0.11 and 0.173 +/- 0.019 cmH2O/ml, respectively, with minor differences between stress relaxation and stress recovery curves. The response to sinusoidal forcing was characterized by the effective resistance (Re) and elastance (EL). Re decreased from 2.48 +/- 0.41 cmH2O.ml-1.s at 0.01 Hz to 0.18 +/- 0.03 cmH2O.ml-1.s at 0.5 Hz, and EL increased from 0.99 +/- 0.10 to 1.26 +/- 0.20 cmH2O/ml on the same frequency range. These data were analyzed with the frequency-domain version of the same model, complemented by a Newtonian resistance (R) to account for airway resistance: Re = R + B/ (9.2f) and EL = A + 0.25B + B . log 2 pi f, where f is the frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Spatial distribution of collagen and elastin fibers in the lungs   总被引:3,自引:0,他引:3  
Surface tension forces acting on the thin-wall alveolar septa and the collagen-elastin fiber network are major factors in lung parenchymal micromechanics. Quantitative serial section analysis and morphometric evaluations of planar sections were used to determine the spatial location of collagen and elastin fibers in Sprague-Dawley rat and normal human lung samples. A large concentration of connective tissue fibers was located in the alveolar duct wall in both species. For rats, the tissue densities of collagen and elastin fibers located within 10 microns of an alveolar duct were 13 and 9%, respectively. In human lung samples, the tissue densities of collagen and elastin fibers within 20 microns of an alveolar duct were 18 and 16%, respectively. In both species, bands of elastin fibers formed a continuous ring around each alveolar mouth. In human lungs, elastin fibers were found to penetrate significantly deeper into alveolar septal walls than they did in rat lungs. The concentration of connective tissue elements in the alveolar duct walls of both species is consistent with their proposed roles as the principal load-bearing elements of the lung parenchyma.  相似文献   

13.
We measured respiratory input impedance (1-25 Hz) in mice and obtained parameters for airway and tissue mechanics by model fitting. Lung volume was varied by inflating to airway opening pressure (Pao) between 0 and 20 cm H2O. The expected pattern of changes in respiratory mechanics with increasing lung volume was seen: a progressive fall in airway resistance and increases in the coefficients of tissue damping and elastance. A surprising pattern was seen in hysteresivity (eta), with a plateau at low lung volumes (Pao < 10 cm H2O), a sharp fall occurring between 10 and 15 cm H2O, and eta approaching a second (lower) plateau at higher lung volumes. Studies designed to elucidate the mechanism(s) behind this behavior revealed that this was not due to chest wall properties, differences in volume history at low lung volume, time dependence of volume recruitment, or surface-acting forces. Our data are consistent with the notion that at low lung volumes the mechanics of the tissue matrix determine eta, whereas at high lung volumes the properties of individual fibers (collagen) become more important.  相似文献   

14.
We investigated the influence of transpulmonary (Ptp) and vascular pressures on the size of the pores of Kohn in primary alveolar septa. Dogs lungs, perfused and ventilated in situ, were rapidly frozen with Freon 22 in zone II or III conditions following deflation to Ptp of 5, 15, or 25 cmH2O. Frozen samples were freeze-substituted for transmission electron microscopy. Five fields containing at least one pore each were selected randomly from each section of tissue, and the minimum diameter visible in the cut section was measured. For both zone II and III conditions, as Ptp increased, mean pore size increased. The mean pore size under zone III conditions was 1.2015, 1.788, and 2.249 micrometer for Ptp of 5, 15, and 25 cmH2O, respectively. For zone 2 conditions, the corresponding values were 1.1438, 1,8757, and 2.08 micrometer. For both zones II and III, increasing capillary hydrostatic pressure had no significant effect on pore size. The results support the notion that alveolar pores can increase collateral ventilation by dynamically stretching as Ptp increases. Capillary pressure does not influence pore size probably because of collagen fibers, which surround the pore lumen. Presumably, these fibers resist encroachment of capillaries on the pore lumen as vascular pressures increase.  相似文献   

15.
We assessed pulmonary mechanics in six open-chest rabbits (3 young and 3 adult) by the forced oscillation technique between 0.16 and 10.64 Hz. Under control conditions, pulmonary resistance (RL) decreased markedly between 0.16 and 4 Hz, after which it became reasonably constant. Measurements of alveolar pressure from two alveolar capsules in each rabbit showed that the large decrease of RL with increasing frequency below 4 Hz was due to lung tissue rheology and that tissue resistance was close to zero above 4 Hz. Estimates of resistance and elastance, also obtained by fitting tidal ventilation data at 1 Hz to the equation of the linear single-compartment model, gave values for RL motion that were slightly higher than those obtained by forced oscillations at the same frequency, presumably because of the flow dependence of airways resistance. After treatment with increasing doses of aerosolized methacholine, RL and pulmonary elastance between 0.16 and 1.34 Hz progressively increased, as did the point at which the pulmonary reactance crossed zero (the resonant frequency). The alveolar pressure measurements showed the lung to become increasingly inhomogeneously ventilated in all six animals, whereas in the three younger rabbits lobar atelectasis developed at high methacholine concentrations and the alveolar capsules ceased to communicate with the central airways. We conclude that the low-frequency pulmonary impedance of rabbits exhibits the same qualitative features observed in other species and that it is a sensitive indicator of the changes in pulmonary mechanics occurring during bronchoconstriction.  相似文献   

16.
We measured the mechanical properties of the respiratory system of C57BL/6 mice using the optimal ventilation waveform method in closed- and open-chest conditions at different positive end-expiratory pressures. The tissue damping (G), tissue elastance (H), airway resistance (Raw), and hysteresivity were obtained by fitting the impedance data to three different models: a constant-phase model by Hantos et al. (Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ. J Appl Physiol 72: 168-178, 1992), a heterogeneous Raw model by Suki et al. (Suki B, Yuan H, Zhang Q, Lutchen KR. J Appl Physiol 82: 1349-1359, 1997), and a heterogeneous H model by Ito et al. (Ito S, Ingenito EP, Arold SP, Parameswaran H, Tgavalekos NT, Lutchen KR, Suki B. J Appl Physiol 97: 204-212, 2004). Both in the closed- and open-chest conditions, G and hysteresivity were the lowest and Raw the highest in the heterogeneous Raw model, and G and H were the largest in the heterogeneous H model. Values of G, Raw, and hysteresivity were significantly higher in the closed-chest than in the open-chest condition. However, H was not affected by the conditions. When the tidal volume of the optimal ventilation waveform was decreased from 8 to 4 ml/kg in the closed-chest condition, G and hysteresivity significantly increased, but there were smaller changes in H or Raw. In summary, values of the obtained mechanical properties varied among these models, primarily due to heterogeneity. Moreover, the mechanical parameters were significantly affected by the chest wall and tidal volume in mice. Contribution of the chest wall and heterogeneity to the mechanical properties should be carefully considered in physiological studies in which partitioning of airway and tissue properties are attempted.  相似文献   

17.
Excessive mechanical ventilation results in changes in lung tissue mechanics. We hypothesized that changes in tissue properties might be related to changes in the extracellular matrix component proteoglycans (PGs). The effect of different ventilation regimens on lung tissue mechanics and PGs was examined in an in vivo rat model. Animals were anesthetized, tracheostomized, and ventilated at a tidal volume of 8 (VT(8)), 20, or 30 (VT(30)) ml/kg, positive end-expiratory pressure of 0 (PEEP(0)) or 1.5 (PEEP(1.5)) cmH(2)O, and frequency of 1.5 Hz for 2 h. The constant-phase model was used to derive airway resistance, tissue elastance, and tissue damping. After physiological measurements, one lung was frozen for immunohistochemistry and the other was reserved for PG extraction and Western blotting. After 2 h of mechanical ventilation, tissue elastance and damping were significantly increased in rats ventilated at VT(30)PEEP(0) compared with control rats (ventilated at VT(8)PEEP(1.5)). Versican, basement membrane heparan sulfate PG, and biglycan were all increased in rat lungs ventilated at VT(30)PEEP(0) compared with control rats. At VT(30)PEEP(0), heparan sulfate PG and versican staining became prominent in the alveolar wall and airspace; biglycan was mostly localized in the airway wall. These data demonstrate that alterations in lung tissue mechanics with excessive mechanical ventilation are accompanied by changes in all classes of extracellular matrix PG.  相似文献   

18.
Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.  相似文献   

19.
Previous studies have shown that lung challenge with smooth muscle agonists increases tissue viscance (Vti), which is the pressure drop between the alveolus and the pleura divided by the flow. Passive inflation also increases Vti. The purpose of the present study was to measure the changes in Vti during positive end-expiratory pressure- (PEEP) induced changes in lung volume and with a concentration-response curve to methacholine (MCh) in rabbits and to compare the effects of induced constriction vs. passive lung inflation on tissue mechanics. Measurements were made in 10 anesthetized open-chest mechanically ventilated New Zealand male rabbits exposed first to increasing levels of PEEP (3-12 cmH2O) and then to increasing concentrations of MCh aerosol (0.5-128 mg/ml). Lung elastance (EL), lung resistance (RL), and Vti were determined by adjusting the equation of motion to tracheal and alveolar pressures during tidal ventilation. Our results show that under baseline conditions, Vti accounted for a major proportion of RL; during both passive lung inflation and MCh challenge this proportion increased progressively. For the same level of change in EL, however, the increase in Vti was larger during MCh challenge than during passive inflation; i.e., the relationship between energy storage and energy dissipation or hysteresivity was dramatically altered. These results are consistent with a MCh-induced change in the intrinsic rheological properties of lung tissues unrelated to lung volume change per se. Lung tissue constriction is one possible explanation.  相似文献   

20.
There is a body of literature in animal models that has suggested the development of emphysema following severe calorie restriction. This has led to the notion of "nutritional emphysema" that might have relevance in COPD patients. There have been few studies, however, that have looked closely at both the mechanics and lung structure in the same animals. In the present work, we examined lung mechanics and histological changes in two strains of mice that have substantial differences in alveolar size, the C57BL/6 and C3H/HeJ strains. We quantified the dynamic elastance and resistance at 2.5 Hz, the quasistatic pressure volume curve, and the alveolar chord lengths in lungs inflated to a lung capacity at 25-30 cm H(2)O. We found that after 2 or 3 wk of calorie restriction to 1/3 their normal diet, the lungs became stiffer with increased resistance. In addition, the lung capacity was also decreased. These mechanical changes were reversed after 2 wk on a normal ad libitum diet. Histology of the postmortem fixed lungs showed no changes in the mean alveolar chord lengths with calorie restriction. Although the baseline mechanics and alveolar size were quantitatively different in the two strains, both strains showed similar qualitative changes during the starvation and refeeding periods. Thus, in two strains of mice with genetically determined differences in alveolar size, neither the mechanics nor the histology show any evidence of emphysema-like changes with this severe caloric insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号