首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 microM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three features were observed from the 8-cell stage in treated embryos, and blastomeres with apoptotic features appeared more numerous in treated than in untreated embryos. Ultrastructural evidence of apoptosis occurred with a comparable distribution pattern as apoptotic features detected by fluorescence microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre-implantation embryos.  相似文献   

2.
The objectives of these experiments were: 1) to determine an effective culture method for production of transferable bovine embryos following exogenous DNA microinjection; 2) to determine the effect of these methods on the ability of the injected zygotes and 2-cell embryos to develop in vivo; and, 3) to compare development of embryos microinjected as zygotes or 2-cell embryos. DNA fragments encoding bovine growth hormone (bGH), bGH-10Delta6, and a bGH antagonist, bGH-M8 (5) were used. A total of 639 zygotes and 153 2-cell embryos were injected. Zygotes and 2-cell embryos microinjected with bGH-M8 were incubated for 6 days in oviducts of intermediate recipients (rabbits or sheep) or co-cultured in vitro with bovine oviduct epithelial cells. Zygotes and 2-cell embryos microinjected with bGH-10Delta6 were co-cultured in vitro only. The most effective method for the production of transferable bovine embryos following exogenous DNA microinjection was via in vitro co-culturing with bovine epithelial cells. For example, 32.3% of the bGH-M8 and 33.5% of the bGH-10Delta6 microinjected zygotes reached the morula/blastocyst stage while 48.4% and 63.0% of the 2-cell embryos injected with bGH-M8 and bGH-10Delta6, respectively, developed to the morula/blastocyst stage. The percentage of blastocysts obtained for control, non-injected zygotes and 2-cell embryos was 34.5% and 69.6%, respectively. The developmental rate to the morula/blastocyst stage was approximately 20% greater for embryos obtained from microinjected 2-cell embryos relative to microinjected zygotes. However, there was no significant difference in pregnancy rates following transfer of these blastocysts to cow uteri.  相似文献   

3.
In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or 2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4-and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16-and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8-to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continued development of the injected embryos. These results indicate that cells overexpressed with SAMDC undergo apoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a “fall-safe“ mechanism to eliminate physiologically-severely damaged cells to save the rest of the embryo.  相似文献   

4.
In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animal side blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpress  相似文献   

5.
Chronology of apoptosis in bovine embryos produced in vivo and in vitro   总被引:8,自引:0,他引:8  
The postimplantation developmental potential of embryos can be affected by various forms of cell death, such as apoptosis, at preimplantation stages. However, correct assessment of apoptosis is needed for adequate inference of the developmental significance of this process. This study is the first to investigate the independent chronological occurrence of apoptotic changes in nuclear morphology and DNA degradation (detected by the TUNEL reaction) and incidences of nuclei displaying these features at various preimplantation stages of bovine embryos produced both in vivo and in vitro. Different elements of apoptosis were observed at various developmental stages and appeared to be differentially affected by in vitro production. Nuclear condensation was observed from the 6-cell stage in vitro and the 8-cell stage in vivo, whereas the TUNEL reaction was first observed at the 6-cell stage in vitro and the 21-cell stage in vivo. Morphological signs of other forms of cell death were also observed in normally developing embryos produced both in vivo and in vitro. The onset of apoptosis seems to be developmentally regulated in a stage-specific manner, but discrete features of the apoptotic process may be differentially regulated and independently modulated by the mode of embryo production. Significant differences in indices of various apoptotic features were not evident between in vivo- and in vitro-produced embryos at the morula stage, but such differences could be observed at the blastocyst stage, where in vitro production was associated with a higher degree of apoptosis in the inner cell mass.  相似文献   

6.
Preimplantation mouse embryos of many strains become arrested at the 2-cell stage if the osmolarity of culture medium that normally supports development to blastocysts is raised to approximately that of their normal physiological environment in the oviduct. Arrest can be prevented if molecules that serve as "organic osmolytes" are present in the medium, because organic osmolytes, principally glycine, are accumulated by embryos to provide intracellular osmotic support and regulate cell volume. Medium with an osmolarity of 310 mOsM induced arrest of approximately 80% of CF1 mouse embryos at the 2-cell stage, in contrast to the approximately 100% that progressed beyond the 2-cell stage at 250 or 301 mOsM with glycine. The nature of this arrest induced by physiological levels of osmolarity is unknown. Arrest was reversible by transfer to lower-osmolarity medium at any point during the 2-cell stage, but not after embryos would normally have progressed to the 4-cell stage. Cessation of development likely was not due to apoptosis, as shown by lack of external annexin V binding, detectable cytochrome c release from mitochondria, or nuclear DNA fragmentation. Two-cell embryos cultured at 310 mOsM progressed through the S phase, and zygotic genome activation markers were expressed. However, most embryos failed to initiate the M phase, as evidenced by intact nuclei with decondensed chromosomes, low M-phase promoting factor activity, and an inactive form of CDK1, although a few blastomeres were arrested in metaphase. Thus, embryos become arrested late in the G(2) stage of the second embryonic cell cycle when stressed by physiological osmolarity in the absence of organic osmolytes.  相似文献   

7.
Apoptosis in the bovine embryo cannot be induced by activators of the extrinsic apoptosis pathway until the 8-16-cell stage. Depolarization of mitochondria with the decoupling agent carbonyl cyanide 3-chlorophenylhydrazone (CCCP) can activate caspase-3 in 2-cell embryos but DNA fragmentation does not occur. Here we hypothesized that the repression of apoptosis is caused by methylation of DNA and deacetylation of histones. To test this hypothesis, we evaluated whether reducing DNA methylation by 5-aza-2′-deoxycytidine (AZA) or inhibition of histone deacetylation by trichostatin-A (TSA) would make 2-cell embryos susceptible to DNA fragmentation caused by CCCP. The percent of blastomeres positive for TUNEL was affected by a treatment × CCCP interaction (P < 0.0001). CCCP did not cause a large increase in the percent of cells positive for TUNEL in embryos treated with vehicle but did increase the percent of cells that were TUNEL positive if embryos were pretreated with AZA or TSA. Immunostaining using an antibody against 5-methyl-cytosine antibody revealed that AZA and TSA reduced DNA methylation. In conclusion, disruption of DNA methylation and histone deacetylation removes the block to apoptosis in bovine 2-cell embryos.  相似文献   

8.
Jeon Y  Jeong SH  Biswas D  Jung EM  Jeung EB  Lee ES  Hyun SH 《Theriogenology》2011,76(7):1187-1196
Mammalian embryos produced in vitro show a high rate of early developmental failure. Numerous somatic cell nuclear transfer (SCNT) embryos undergo arrest and show abnormal gene expression in the early developmental stages. The purpose of this study was to analyze porcine SCNT embryo development and investigate the cause of porcine SCNT embryo arrest. The temporal cleavage pattern of porcine SCNT embryos was analyzed first, and the blastocyst origin at early developmental stage was identified. To investigate markers of arrest in the cleavage patterns of preimplantation SCNT embryos, the expression of survivin—the smallest member of the inhibitor of apoptosis (IAP) gene family, which suppresses apoptosis and regulates cell division—was compared between embryos showing normal cleavage and arrested embryos.A total of 511 SCNT embryos were used for cleavage pattern analysis. Twenty-four hours post activation (hpa), embryos were classified into five groups based on the cleavage stage as follows; 1-cell, 2-cell, 4-cell, 8-cell and fragmentation (frag). In addition, 48 hpa embryos were more strictly classified into 15 groups based on the cleavage stage of 24 hpa; 1-1 cell (24 hpa-48 hpa), 1-2 cell, 1-4 cell, 1-8 cell, 1 cell-frag, 2-2 cell, 2-4 cell, 2-8 cell, 2 cell-frag, 4-4 cell, 4-8 cell, 4 cell-frag, 8-8 cell, 8 cell-frag, and frag-frag. These groups were cultured until 7 d post activation, and were evaluated for blastocyst formation. At 24 hpa, the proportion of 2-cell stage was significantly higher (44.5%) than those in the other cleavage stages (1-cell: 13.4%; 4-cell: 17.9%; 8-cell: 10.3%; and frag: 13.9%). At 48 hpa, the proportion of embryos in the 2-4 cell stage was significantly higher (32.4%) than those in the other cleavage stages (2-8 cell: 8.2%; 4-8 cell: 12.1%; and frag-frag: 13.9%). Some embryos arrested at 48 hpa (1-1 cell: 5.8%; 2-2 cell: 2.8%; 4-4 cell: 3.8%; 8-8 cell: 6.5%; and total arrested embryos: 18.9%). Blastocyst formation rates were higher in 2-4 cell cleavage group (20.2%) than in other groups. SCNT embryos in 2-4 cell stage showed stable developmental competence. In addition, we investigated survivin expression in porcine SCNT embryos during the early developmental stages. The levels of survivin mRNA in 2-cell, 4-cell stage SCNT embryos were significantly higher than those of arrested embryos. Survivin protein expression showed a similar pattern to that of survivin mRNA. Normally cleaving embryos showed higher survivin protein expression levels than arrested embryos. These observations suggested that 2-4 cell cleaving embryos at 48 hpa have high developmental competence, and that embryonic arrest, which may be influenced by survivin expression in porcine SCNT embryos.  相似文献   

9.
Apoptosis in the early bovine embryo   总被引:7,自引:0,他引:7  
  相似文献   

10.
5-脱氧杂氮胞苷抑制小鼠附植前的胚胎发育   总被引:1,自引:0,他引:1  
DNA甲基化在哺乳动物发育过程中有关键作用.在小鼠附植前胚胎发育过程中,DNA甲基化一直处于动态变化过程中.通过将体外受精胚在5-AZA-CdR中持续培养,研究5-AZA-CdR对小鼠附植前胚胎发育的影响,为附植前胚胎发育机理的研究及5-AZA-CdR的毒副作用研究提供试验基础.从原核期加入不同浓度的5-AZA-CdR时,胚胎不能发育到桑椹胚(0.2 和1.0 μmol/L)和4-细胞胚(5.0 μmol/L);从2-细胞期加入时,胚胎阻滞于未致密化的8-细胞(0.2 和1.0 μmol/L)和3/4-细胞期(5.0 μmol/L);而当从4-细胞加入时,虽然胚胎能够发育到早期桑椹胚,但发育比例同对照相比显著降低(P < 0.05).进一步检测凋亡、基因组DNA甲基化和整体转录活性,结果显示,高浓度的5-AZA-CdR导致8-细胞和早期桑椹胚发生早期凋亡,而低浓度的5-AZA-CdR引起8-细胞和早期桑椹胚基因组DNA甲基化的降低和转录活性的降低,并且这种降低呈浓度依赖性.所以加入低浓度的5-AZA-CdR时,胚胎的DNA甲基化降低,引起转录活性的降低,进而导致胚胎发育的停滞.  相似文献   

11.
12.
13.
This study was undertaken to obtain specific information on the characteristics of spontaneous and induced apoptosis during preimplantation development of rabbit in vivo and in vitro developed embryos and mouse in vitro embryos. After reaching appropriate developmental stages, embryos were transferred into culture media with or without apoptotic inductor (actinomycin D 500 ng/mL) and cultured for 10 h. The identification of apoptotic cells was based on morphological assessment of nuclei and on detection of specific DNA degradation, phosphatidylserine redistribution and active caspase-3 under fluorescence microscope. Our experiments proved that apoptosis is a frequent physiological event occurring during normal preimplantation development. A high number of untreated rabbit and mouse blastocysts contained at least one apoptotic cell. Rabbit embryos showed a lower incidence of spontaneous apoptosis. Treated blastocysts of both species responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and significant increase in the incidence of apoptotic cell death. The occurrence of spontaneous apoptosis during earlier preimplantation development was sporadic and its presence was observed only at stages following embryonic genome activation (at 4-cell stage and later in mouse, at 16-cell and morula stage in rabbit). The susceptibility of embryos at early stages to the apoptotic inductor was much lower. The presence of actinomycin D did not increase the incidence of apoptotic embryos or apoptotic cells. Nevertheless, it slowed down embryo growth and triggered earlier appearance of some apoptotic features (at the 6-cell stage in rabbit). The results show that the occurrence of both spontaneous and induced apoptosis in preimplantation embryos is stage- and species-specific.  相似文献   

14.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

15.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

16.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

17.
18.
This study focused on nucleolar changes in bovine embryos reconstructed from enucleated mature oocytes fused with blastomeres of morulae or with cultured, serum unstarved bovine fetal skin fibroblasts (embryonic vs. somatic cloning). The nucleotransferred (NT) embryos were collected and fixed at time intervals of 1-2 h (early 1-cell stage), 10-15 h (late 1-cell stage), 22-24 h (2-cell stage), 37-38 h (4-cell stage), 40-41 h (early 8-cell stage), 47-48 h (late 8-cell stage), and 55 h (16-cell stage) after fusion. Immunocytochemistry by light and electron microscopy was used for structure-function characterization of nucleolar components. Antibodies against RNA, protein B23, protein C23, and fibrillarin were applied. In addition, DNA was localized by the terminal deoxynucleotidyl transferase (TdT) technique, and the functional organization of chromatin was determined with the nick-translation immunogold approach. The results show that fully reticulated (active) nucleoli observed in donor cells immediately before fusion as well as in the early 1-cell stage after fusion were progressively transformed into nucleolar bodies displaying decreasing numbers of vacuoles from the 2- to 4-cell stage in both types of reconstructed embryos. At the late 8-cell stage, morphological signs of resuming nucleolar activity were detected. Numerous new small vacuoles appeared, and chromatin blocks reassociated with the nucleolar body. During this period, nick-translation technique revealed numerous active DNA sites in the periphery of chromatin blocks associated with the nucleolar body. Fully reticulated nucleoli were again observed as early as the 16-cell stage of embryonic cloned embryos. In comparison, the embryos obtained by fetal cloning displayed a lower tendency to develop, mainly during the first cell cycle and during the period of presumed reactivation. Correlatively, the changes in nucleolar morphology (desegregation and rebuilding) were at least delayed in many somatic NT embryos in comparison with the embryonic NT group. It is concluded that complete reprogramming of rRNA gene expression is part of the general nuclear reprogramming necessary for development after NT.  相似文献   

19.
The low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast cells were used as donors, while the enucleated bovine and goat oocytes matured in vitro as recipients. Goat-goat (GG), goat-cattle (GC) and goat in vivo-produced embryos at the 2-cell, 4-cell, 8-cell and 16-cell stages were compared using transmission electron microscopy. These results showed that the three types of embryos had a similar tendency for mitochondrial change. Nevertheless, changes in GG embryos were more similar to changes in in vivo-produced embryos than were GC embryos, which had more extreme mitochondrial deviation. The results indicate the effects of the cytoplast on mitochondria development. The zona pellucida (ZP) in all three types of embryos became thinner and ZP pores in both GC and GG embryos showed an increased rate of development, especially for GC embryos, while in vivo-produced embryos had smooth ZP. The Golgi apparatus (Gi) and rough endoplasmic reticulum (RER) of the two reconstructed embryos became apparent at the 8-cell stage, as was found for in vivo embryos. The results showed that the excretion of reconstructed embryos was activated on time. Lipid droplets (LD) of GC and GG embryos became bigger, and congregated. In in vivo-produced embryos LD changed little in volume and dispersed gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere illuminated that the nucleus function of reconstructed embryos was partly changed. In addition, at a later stage in GC embryos the nuclear envelope displayed infoldings and the chromatin was concentrated, implying that the blastomeres had an obvious trend towards apoptosis. The gap junctions of the three types of embryos changed differently and GG and GC embryos had bigger perivitelline and intercellular spaces than did in vivo-produced embryos. These results are indicative of normal intercellular communication at an early stage, but this became weaker in later stages in reconstructed embryos. In conclusion, inter- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe destruction. These ultrastructural deviations might contribute to the compromised developmental potential of reconstructed embryos.  相似文献   

20.
One-cell CF-1 x B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mM-glutamine and 0.1 mM-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3-4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33.7 total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号