首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprene reduces visible damage (necrosis) of leaves caused by exposure to ozone but the mechanism is not known. Here we show that in Phragmites leaves isoprene emission was stimulated after a 3-h exposure to high ozone levels. The photosynthetic apparatus of leaves in which isoprene emission was inhibited by fosmidomycin became more susceptible to damage by ozone than in isoprene-emitting leaves. Three days after ozone fumigation, the necrotic leaf area was significantly higher in isoprene-inhibited leaves than in isoprene-emitting leaves. Isoprene-inhibited leaves also accumulated high amounts of nitric oxide (NO), as detected by epifluorescence light microscopy. Our results confirm that oxidative stresses activate biosynthesis and emission of chloroplastic isoprenoid, bringing further evidence in support of an antioxidant role for these compounds. It is suggested that, in nature, the simultaneous quenching of NO and reactive oxygen species by isoprene may be a very effective mechanism to control dangerous compounds formed under abiotic stress conditions, while simultaneously attenuating the induction of the hypersensitive response leading to cellular damage and death.  相似文献   

2.
Isoprene emission by plants is affected by transmissible wound signals   总被引:3,自引:3,他引:0  
Isoprene (2-methyl 1,3-butadiene) is emitted from many plants, but the signals regulating isoprene emission are unknown. Mounting leaves in a gas exchange chamber or taking small leaf punches for biochemical analysis was found to reduce the rate of isoprene emission (Loreto & Sharkey 1993). This phenomenon was investigated by putting terminal leaflets of velvet bean (Mucuna deeringeniana L.) and kudzu [Pueraria lobaia (Willd) Ohwi.] into a gas exchange chamber and monitoring isoprene emission and photosynthesis. Lateral leaflets or remote leaves were then wounded or mechanically stimulated. The rate of isoprene emission was reduced after 1 min by up to 75% by burning a lateral leaflet with a match. Even a 7 ms?1 (25km h?1) wind imposed on a lateral leaflet reduced isoprene emission from the terminal leaflet by 18%. Photosynthesis rates were either unaffected by these treatments or reduced more slowly than isoprene emission rates, indicating that the effect of isoprene emission rates was not a consequence of changes in photosynthetic activity. Isoprene emission from a terminal leaflet was reduced by burning leaves above and below the monitored leaflet when on the same stem. The effect was much reduced if the burned leaf (all three leaflets) was on a different stem from the monitored leaflet. Reduction of the rate of isoprene emission was observed even when the burned leaf was 52 cm distant from the measured leaflet. Increasing the distance between the stressed leaf and the monitored leaf caused the effect to be slower and smaller. It is speculated that a signal is generated by wounding which propagates through the plant at 1.3 mm s?1. This velocity was consistent throughout the measurements and is similar to the rate of propagation of electrical signals such as action potentials and variation potentials. The effect of the environmental stress, and particularly the wind effect, can be frequent in nature and should be considered when estimating local and regional emission of isoprene for modelling atmospheric chemistry. If leaf samples used for isoprene determination are exposed to the type of stress we investigated, isoprene emission inventories based on leaf level measurements will be underestimated.  相似文献   

3.
Isoprene emitted from plants is made in chloroplasts from dimethylallyl pyrophosphate (DMAPP). Leaves of Populus nigra and Phragmites australis exposed to (13)CO(2) for 15 min emitted isoprene that was about 90% (13)C, but DMAPP isolated from those leaves was only 28% and 36% (13)C, respectively. The labeled DMAPP is likely to represent chloroplastic DMAPP contributing to isoprene emission. A substantial (13)C labeling was also found in both emission and DMAPP pool of low-emitting, young leaves of Phragmites. This confirms that low emission of young leaves is not caused by absence of chloroplastic DMAPP but rather by enzyme characteristics. A very low (13)C labeling was found in the DMAPP pool and in the residual isoprene emission of leaves previously fed with fosmidomycin to inhibit isoprene formation. This shows that fosmidomycin is a very effective inhibitor of the chloroplastic biosynthetic pathway of isoprene synthesis, that the residual isoprene is formed from extra-chloroplastic sources, and that chloroplastic and extrachloroplastic pathways are not cross-linked, at least following inhibition of the chloroplastic pathway. Refixation of unlabeled respiratory CO(2) in the light may explain incomplete labeling of isoprene emission, as we found a good association between these two parameters.  相似文献   

4.
Isoprene is emitted from leaves of numerous plant species and has important implications for plant metabolism and atmospheric chemistry. The ability to use stored carbon (alternative carbon sources), as opposed to recently assimilated photosynthate, for isoprene production may be important as plants routinely experience photosynthetic depression in response to environmental stress. A CO2‐labelling study was performed and stable isotopes of carbon were used to examine the role of alternative carbon sources in isoprene production in Populus deltoides during conditions of water stress and high leaf temperature. Isotopic fractionation during isoprene production was higher in heat‐ and water‐stressed leaves (?8.5 and ?9.3‰, respectively) than in unstressed controls (?2.5 to ?3.2‰). In unstressed plants, 84–88% of the carbon in isoprene was derived from recently assimilated photosynthate. A significant shift in the isoprene carbon composition from photosynthate to alternative carbon sources was observed only under severe photosynthetic limitation (stomatal conductance < 0.05 mol m?2 s?1). The contribution of photosynthate to isoprene production decreased to 77 and 61% in heat‐ and water‐stressed leaves, respectively. Across water‐ and heat‐stress experiments, allocation of photosynthate was negatively correlated to the ratio of isoprene emission to photosynthesis. In water‐stressed plants, the use of alternative carbon was also related to stomatal conductance. It has been proposed that isoprene emission may be regulated by substrate availability. Thus, understanding carbon partitioning to isoprene production from multiple sources is essential for building predictive models of isoprene emission.  相似文献   

5.
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat‐stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat‐stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.  相似文献   

6.
Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.  相似文献   

7.
Several recent studies have suggested that control of isoprene emission rate is in part exerted by supply of extrachloroplastic phosphoenolpyruvate to the chloroplast. To test this hypothesis, we altered PEP supply by differential induction of cytosolic nitrate reductase (NR) and PEP carboxylase (PEPC) in plants of Populus deltoides grown with NO3- or NH4+ as the sole nitrogen source. Growth with 8 mM NH4+ produced a high leaf nitrogen concentration, compared with 8 mM NO3-, as well as slightly elevated rates of photosynthesis and significantly enhanced rates of isoprene emission and content of dimethylallyl diphosphate (DMAPP, a precursor to isoprene biosynthesis), chlorophyll (a+b) and carotenoids. Growth with 8 mM NO3- resulted in parallel reductions in both leaf isoprene emission rate and DMAPP. The differential effects of growth with NH4+ or NO3- were not observed when plants were grown with 4 mM nitrogen. The effects of reduced DMAPP availability were specific to isoprene emission and were not propagated to higher isoprenoids, as the correlations between nitrogen content and either leaf chlorophyll (a+b) or total carotenoids were unaffected by nitrogen source. Biochemical analysis revealed significantly higher levels of NR and PEPC activity in leaves of 8 mM NO3- -grown plants, consistent with their fundamental roles in nitrate assimilation. Taken together, these results support the hypothesis that foliar assimilation of NO3- reduces isoprene emission rate by competing for carbon skeletons (mediated by PEPC) within the cytosol and possibly reductant within the chloroplast. Cytosolic competition for PEP is a major regulator of chloroplast DMAPP supply, and we offer a new "safety valve" hypothesis to explain why plants emit isoprene.  相似文献   

8.
The stable carbon isotope composition of isoprene emitted from leaves of red oak (Quercus rubra L.) was measured. Isoprene was depleted in 13C relative to carbon recently fixed by photosynthesis. The difference in isotope composition between recently fixed carbon and emitted isoprene was independent of the isotopic composition of the source CO2. β-Carotene, an isoprenoid plant constituent, was depleted in 13C relative to whole leaf carbon to the same degree as isoprene, but fatty acids were more depleted. Isoprene emitted from leaves fed abscisic acid was much less depleted in 13C than was isoprene emitted from unstressed leaves. We conclude that isoprene is made from an isoprenoid precursor that is derived from acetyl-CoA made from recent photosynthate. The carbon isotope composition of isoprene in the atmosphere is likely to be slightly more negative (less 13C) than C3 plant material but when plants are stressed the isotopic composition could vary.  相似文献   

9.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

10.
Isoprene production by Hamamelis virginiana L. and Quercus borealis Michx. leaves was studied. When ambient CO(2) concentrations were maintained with bicarbonate buffers, the rate of isoprene production at 125 microliters per liter of CO(2) was approximately four times that at 250 microliters per liter of CO(2). Isoprene production was drastically inhibited by 97% O(2). Dichlorodimethylphenylurea (0.1 mm), NaHSO(3) (10 mm), and alpha-hydroxy-2-pyridinemethanesulfonic acid (10 mm) inhibited isoprene production but increased the compensation point of the tissue. Isonicotinic acid hydrazide neither inhibited isoprene emission nor increased the compensation point of the tissue significantly. Inhibition of isoprene production does not seem to correlate with stomatal resistance. Isoprene was labeled by intermediates of the glycolate pathway, and similarities are noted between the biosynthesis of isoprene and that of beta-carotene.  相似文献   

11.
Isoprene is the most important nonmethane hydrocarbon emitted by plants. The role of isoprene in the plant is not entirely understood but there is evidence that it might have a protective role against different oxidative stresses originating from heat shock and/or exposure to ozone (O(3)). Thus, plants under stress conditions might benefit by constitutively high or by higher stress-induced isoprene emission rates. In this study, measurements are presented of isoprene emission from aspen (Populus tremuloides) trees grown in the field for several years under elevated CO(2) and O(3). Two aspen clones were investigated: the O(3)-tolerant 271 and the O(3)-sensitive 42E. Isoprene emission decreased significantly both under elevated CO(2) and under elevated O(3) in the O(3)-sensitive clone, but only slightly in the O(3)-tolerant clone. This study demonstrates that long-term-adapted plants are not able to respond to O(3) stress by increasing their isoprene emission rates. However, O(3)-tolerant clones have the capacity to maintain higher amounts of isoprene emission. It is suggested that tolerance to O(3) is explained by a combination of different factors; while the reduction of O(3) uptake is likely to be the most important, the capacity to maintain higher amounts of isoprene is an important factor in strengthening this character.  相似文献   

12.
Isoprene (2-methyl-1,3-butadiene) is one of the major volatile hydrocarbons emitted by plants, but its biosynthetic pathway and role in plant metabolism are unknown. Mucuna sp. (velvet bean) is an isoprene emitter, and leaf isoprene emission rate increased as much as 125-fold as leaves developed, and declined in older leaves. Net CO2 assimilation and stomatal conductance, under different growth and environmental conditions, increased 3 to 5 days prior to an increase in isoprene emission rate, indicating that photosynthetic competence develops before significant isoprene emission occurs.  相似文献   

13.
Fall R  Monson RK 《Plant physiology》1992,100(2):987-992
Isoprene emission in relation to stomatal distribution and conductance was determined for the hypostomatous species, aspen and white oak, and the amphistomatous species, cottonwood. For aspen and oak, isoprene emission from the adaxial (nonstomatal) surface was <2% of that from the abaxial (stomatal) surface, even when stomata were closed by addition of abscisic acid (ABA). When treated with ABA, the total flux rate of isoprene emission from leaves of these two hypostomatous species was unchanged, despite decreases in stomatal conductance of over 90%. The lack of control over isoprene emission rate by stomatal conductance, despite the apparent movement of isoprene through the stomatal pores, was due to increases in the intercellular isoprene concentration that compensated for the decreased stomatal conductance and restored the equilibrium between the isoprene synthesis rate and emission rate. This relationship was demonstrated by (a) an experiment in which the decrease in the internal isoprene pool following the imposition of darkness took longer in the presence of ABA than in its absence, and (b) direct measurements of the internal isoprene concentration through vacuum extraction, which revealed substantially higher values in the presence of ABA than in its absence. In the amphistomatous species, cottonwood, isoprene was emitted from both surfaces and addition of ABA caused an increase in isoprene emission from one surface coupled with a decrease from the other surface. The specific surface exhibiting an increase varied among leaves, with some leaves exhibiting an increase from the adaxial surface and other leaves from the abaxial surface. We interpret this as indicating nonuniform stomatal closure with concomitant emission of isoprene at the greatest rate from the surface with the highest stomatal conductance. We also observed an increase in the total isoprene emission rate from cottonwood leaves following treatment with ABA. We interpret this as indicating a stimulation of isoprene synthesis in response to ABA or stomatal closure, with unknown cause.  相似文献   

14.
Abstract. Isoprene (2-methyl 1, 3-butadiene) is emitted from many plants, especially trees. We tested the effect of growth at high CO2 partial pressure and sun versus shade conditions on the capacity of Quercus rubra L. (red oak) and Populus tremuloides Michx. (quaking aspen) leaves to make isoprene. Oak leaves grown at high CO2 partial pressure (65 Pa) had twice the rate of isoprene emission as leaves grown at 40Pa CO2. However, aspen leaves behaved oppositely, with high CO2-grown leaves having just 60-70% the rate of isoprene emission as leaves grown in 40 Pa CO2. Similar responses were observed from 25 to 35 °C leaf temperature during assay. The stimulation of isoprene emission by growth at high CO2 and the stimulation in high temperature resulted in isoprene emission consuming over 15% of the carbon fixed during photosynthesis in high-CO2 grown oak leaves assayed at 35 °C. Leaves from the south (sunny) sides of trees growing in natural conditions had rates of isoprene emission double those of leaves growing in shaded locations on the same trees. This effect was similar in both aspen and oak. The leaves used for these experiments had significantly different chlorophyll a/b ratios indicating they were functionally sun (from the sunny locations) or shade leaves (from the protected locations). Because the metabolic pathway of isoprene synthesis is unknown, we are unable to speculate about how or why these effects occur. However, these effects are more consistent with metabolic control of isoprene release rather than a metabolic leak of isoprene from metabolism. The results are also important for large scale modelling of isoprene emission and for predicting the effect of future increases in atmospheric CO2 level on isoprene emission from vegetation.  相似文献   

15.
Biochemical regulation of isoprene emission   总被引:8,自引:2,他引:8  
Isoprene (C5H8) is emitted from many plants and has a substantial effect on atmospheric chemistry. There are several models to estimate the rate of isoprene emission used to calculate the impact of isoprene on atmospheric processes. The rate of isoprene synthesis will depend either on the activity of isoprene synthase or the availability of its substrate dimethylallyl pyrophosphate (DMAPP). To investigate long‐term regulation of isoprene synthesis, the isoprene emission rate of 15 kudzu leaves was measured. The chloroplast DMAPP level of the five leaves with the highest emission rates and the five leaves with the lowest rates were determined by non‐aqueous fractionation of the bulked leaf samples. Leaves with high basal emission rates had low levels of DMAPP whereas leaves with low basal emission rates had high DMAPP levels in their chloroplasts indicating that the activity of isoprene synthase exerts primary control over the basal emission rate. To investigate short‐term regulation, isoprene precursors were fed to leaves. Feeding dideuterated deoxyxylulose (DOX‐d2) to Eucalyptus leaves resulted in the emission of dideuterated isoprene. Results from DOX‐d2 feeding experiments indicated that control of isoprene emission rate was shared between reactions upstream and downstream of the DOX entry into isoprene metabolism. In CO2‐free air DOX always increased isoprene emission indicating that carbon availability was an important control factor. In N2, isoprene emission stopped and could not be recovered by adding DOX‐d2. Taken together, these results indicate that the regulation of isoprene emission is shared among several steps and the relative importance of the different steps in controlling isoprene emission varies with conditions.  相似文献   

16.
Process-based modelling of isoprene emission by oak leaves   总被引:9,自引:5,他引:4  
The emission rate of the volatile reactive compound isoprene, emitted predominantly by trees, must be known before the level of photo‐oxidants produced during summer smog can be predicted reliably. The emission is dependent on plant species and local conditions, and these dependencies must be quantified to be included in any empirical algorithm for the calculation of isoprene production. Experimental measurements of isoprene emission rates are expensive, however, and existing data are scarce and fragmentary. To overcome these difficulties, it is promising to develop a numerical model capable of precisely calculating the isoprene emission by trees for diverse ecosystems, even under changing environmental conditions. A basic process‐based biochemical isoprene emission model (BIM) has therefore been developed, which describes the enzymatic reactions in leaf chloroplasts leading to the formation of isoprene under varying environmental conditions (e.g. light intensity, temperature). Concentrations of the precursors of isoprene formation, 3‐phosphoglyceric acid and glyceraldehyde 3‐phosphate, are provided by a published light fleck photosynthesis model. Specific leaf and enzyme parameters were determined for the pedunculate oak (Quercus robur L.), so that the BIM is capable of calculating oak‐specific isoprene emission rates as influenced by the leaf temperature and light intensity. High correlation was observed between isoprene emission rates calculated by the BIM and the diurnal isoprene emission rates of leaves measured under controlled environmental conditions. The BIM was even capable of describing changes in isoprene emission caused by midday depression of net photosynthesis.  相似文献   

17.
18.
Plants utilize isoprene emission as a thermotolerance mechanism   总被引:1,自引:0,他引:1  
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.  相似文献   

19.
Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission. Eastern cottonwood (Populus deltoides) saplings were partially defoliated and physiological and growth responses were measured from undamaged and damaged leaves 7 days following damage. Defoliation reduced isoprene emission from undamaged and damaged leaves on partially defoliated plants. Photosynthetic rates and leaf carbon and nitrogen pools were unaffected by damage. Photosynthetic rate and isoprene emission were highly correlated in undamaged leaves on undamaged plants and damaged leaves on partially defoliated plants. There was no correlation between photosynthetic rate and isoprene emission in undamaged leaves on partially defoliated plants. Isoprene emission was also highly correlated with the number of source leaves on the apical shoot in damage treatments. Increased carbon export from source leaves in response to defoliation may have depleted the amount of carbon available for isoprene synthesis, decreasing isoprene emission. These results suggest that while isoprene emission is controlled at the leaf level in undamaged plants, emission from leaves on damaged plants is controlled by whole-branch allocation patterns. Received: 12 May 1998 / Accepted: 9 November 1998  相似文献   

20.
Isoprene emission from plants: why and how   总被引:4,自引:0,他引:4  
BACKGROUND: Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. SCOPE: The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. CONCLUSIONS: The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号