首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

2.
Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethality of Nup160, however, is genetically complex, depending on one or more unknown additional factors in the autosomal background. Here we study the genetics and evolution of Nup160-mediated hybrid lethality in three ways. First, we test for variability in Nup160-mediated hybrid lethality within and among the three species of the D. simulans clade— D. simulans, D. sechellia, and D. mauritiana. We show that the hybrid lethality of Nup160 is fixed in D. simulans and D. sechellia but absent in D. mauritiana. Second, we explore how the hybrid lethality of Nup160 depends on other loci in the autosomal background. We find that D. simulans Nup160-mediated hybrid lethality does not depend on the presence of D. melanogaster Nup96, and we find that D. simulans and D. mauritiana are functionally differentiated at Nup160 as well as at other autosomal factor(s). Finally, we use population genetics data to show that Nup160 has experienced histories of recurrent positive selection both before and after the split of the three D. simulans clade species ∼240,000 years ago. Our genetic results suggest that a hybrid lethal Nup160 allele evolved before the split of the three D. simulans clade species, whereas the other autosomal factor(s) evolved more recently.  相似文献   

3.
    
Speciation is responsible for the vast diversity of life, and hybrid inviability, by reducing gene flow between populations, is a major contributor to this process. In the parasitoid wasp genus Nasonia, F2 hybrid males of Nasonia vitripennis and Nasonia giraulti experience an increased larval mortality rate relative to the parental species. Previous studies indicated that this increase of mortality is a consequence of incompatibilities between multiple nuclear loci and cytoplasmic factors of the parental species, but could only explain ~40% of the mortality rate in hybrids with N. giraulti cytoplasm. Here we report a locus on chromosome 5 that can explain the remaining mortality in this cross. We show that hybrid larvae that carry the incompatible allele on chromosome 5 halt growth early in their development and that ~98% die before they reach adulthood. On the basis of these new findings, we identified a nuclear‐encoded OXPHOS gene as a strong candidate for being causally involved in the observed hybrid breakdown, suggesting that the incompatible mitochondrial locus is one of the six mitochondrial‐encoded NADH genes. By identifying both genetic and physiological mechanisms that reduce gene flow between species, our results provide valuable and novel insights into the evolutionary dynamics of speciation.  相似文献   

4.
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.  相似文献   

5.
6.
7.
8.
The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.  相似文献   

9.
Many insects rely on cuticular hydrocarbons (CHCs) as major recognition signals between individuals. Previous research on the genetics of CHCs has focused on Drosophila in which the roles of three desaturases and one elongase were highlighted. Comparable studies in other insect taxa have not been conducted so far. Here, we explore the genetics of CHCs in hybrids of the jewel wasps Nasonia giraulti and Nasonia vitripennis. We analyzed the CHC profiles of pure strain and of F(2) hybrid males using gas chromatography coupled with mass spectrometry and distinguished 54 peaks, of which we identified 52 as straight-chain, monounsaturated, or methyl-branched CHCs. The latter compound class proved to be particularly abundant and diverse in Nasonia. Quantitative trait locus (QTL) analysis suggests fixed genetic differences between the two strains in 42 of the 54 studied traits, making Nasonia a promising genetic model for identifying genes involved in CHC biosynthesis. QTL for methyl-branched CHCs partly clustered in genomic regions with high recombination rate: a possible indication for pleiotropic genes that control their biosynthesis, which is largely unexplored so far. Finally, we identified and mapped genes in the Nasonia genome with high similarity to genes that have been implicated in alkene biosynthesis in Drosophila and discuss those that match in their position with predicted QTL for alkenes.  相似文献   

10.
The purpose of this study was to evaluate the oxidative capacities and the rate of energy synthesis in isolated mitochondria extracted from normal and post-ischemic myocardium. Isolated rat hearts were perfused according to the working mode with a Krebs Heinseleit buffer containing glucose (11 mM), insulin (10 IU/1) and caprylic acid (25 M). After a 15 min perfusion in normoxic conditions, the hearts were subjected to a 20 min local zero-flow ischemia followed by a 20 min reperfusion. During the perfusion, the aortic and coronary flows, the aortic pressure and the electrocardiogram were monitored. At the end of the reperfusion period, the non-ischemic and ischemic zones (NIZ and IZ, respectively) were separated and the mitochondria were harvested from each zone. The oxygen uptake and the rate of energy production of the NIZ and IZ mitochondria were then assessed with palmitoylcarnitine as substrate in 2 buffers differing in their free calcium concentration (0.041 and 0.150 M). Ischemia provoked a 50% reduction of coronary and aortic flows. The reperfusion of the IZ allowed the partial recovery of coronary flow, but the aortic flow decreased beneath its ischemic value because of the occurrence of severe arrhythmias, stunning and probably hibernation. The IZ mitochondria displayed a lower rate of oxygen consumption, whatever the buffer free calcium concentration. Conversely, their rate of energy production was increased, indicating that their metabolic efficiency was improved as compared to NIZ mitochondria. This might be due to the mitochondrial calcium overload persisting during reperfusion, to the activation of the inner membrane Na+/Ca2+ exchange and to a significant mitochondrial swelling. On the other hand, the presence of an elevated free calcium concentration in the respiration buffer provoked some energy wasting characterized by a constant AMP production. This was attributed to some accumulation of acetate and the activation of the energy-consuming acetylCoA synthetase. In conclusion, ischemia and reperfusion did not alter the membrane integrity of the mitochondria but improved their metabolic efficiency. Nevertheless, these in vitro results can not reflect the mitochondrial function in the reperfused myocardium. The mitochondrial calcium overload reported to last during reperfusion in the cardiomyocytes might mimic the free calcium-induced reduction of metabolic efficiency observed in vitro in the present study. The resulting energy wasting might be responsible for the contractile abnormalities noticed in the reperfused myocardium.  相似文献   

11.
Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations.  相似文献   

12.
13.
Thomson MS  Labonne AM 《Genetica》1998,104(2):155-159
The Tribolium castaneum hybrid inviability gene, H, was selectively introgressed into a genetic background lacking H through serial paternal backcrosses. This revealed a poor viability phenotype (partial paralysis and poor control of the limbs, referred to as tremor) not present in the parent strains. Tremor cosegregated with H, but was expressed only when transmitted paternally and only when H was not also present maternally. The inferred maternal, self‐suppressive effect of H may explain nonreciprocal incompatibilty previously observed between H and H‐incompatible strains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage and mitochondrial dysfunction. The aim of the present study is to investigate the effects of curcuminoids, polyphenols of Curcuma longa (L.) on oxidative stress and mitochondrial impairment in the brain of streptozotocin (STZ)-induced diabetic rats. A marked increase in lipid peroxidation and nitrite levels with simultaneous decrease in endogenous antioxidant marker enzymes was observed in the diabetic rat brain, which was restored to normal levels on curcuminoids treatment. Down-regulation of mitochondrial complex I and IV activity caused by STZ induction was also up-regulated on oral administration of curcuminoids. Moreover, curcuminoids administration profoundly elevated the ATP level, which was earlier reduced in the diabetic brain. These results suggest that curcuminoids exhibit a protective effect by accelerating antioxidant defense mechanisms and attenuating mitochondrial dysfunction in the brain of diabetic rats. Curcuminoids thus may be used as a promising therapeutic agent in preventing and/or delaying the progression of diabetic complications in the brain.  相似文献   

15.
Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.  相似文献   

16.
Drosophila mojavensis and Drosophila arizonae are cactophilic flies that have been used extensively in speciation studies. Incomplete premating isolation, evidence of reinforcement, and a lack of recent introgression between these species point to a potentially important role for post‐zygotic isolating barriers in this system. Other than hybrid male sterility, however, post‐zygotic isolation between D. mojavensis and D. arizonae has received little attention. In this study, we examined viability and life‐history traits of D. mojavensis/D. arizonae F1 hybrids from sympatric crosses. Specifically, we reared hybrids and purebreds on the natural host cacti of each parental species and compared viability, development time, thorax length, and desiccation resistance between hybrids and purebreds. Interestingly, hybrid females from both crosses performed similarly or even better than purebred females. In contrast, hybrid sons of D. arizonae mothers, in addition to being sterile, had shorter average thorax length than males of both parental species, and hybrid males from both crosses had substantially lower desiccation resistance than D. mojavensis males. The probable cost to hybridization for D. mojavensis females resulting from reduced desiccation resistance of hybrid sons may have been an important selective factor in the history of reinforcement for crosses involving these females.  相似文献   

17.
Alzheimer’s, Parkinson’s and Huntington’s disease, and amyotrophic lateral sclerosis are the most relevant neurodegenerative syndromes worldwide. The identification of the etiology and additional factors contributing to the onset and progression of these diseases is of great importance in order to develop both preventive and therapeutic intervention. A common feature of these pathologies is the formation of aggregates, containing mutated and/or misfolded proteins, in specific subsets of neurons, which progressively undergo functional impairment and die. The relationship between protein aggregation and the molecular events leading to neurodegeneration has not yet been clarified. In the last decade, several lines of evidence pointed to a major role for mitochondrial dysfunction in the onset of these pathologies. Here, we review how proteomics has been applied to neurodegenerative diseases in order to characterize the relationship existing between protein aggregation and mitochondrial alterations. Moreover, we highlight recent advances in the use of proteomics to identify protein modifications caused by oxidative stress. Future developments in this field are expected to significantly contribute to the full comprehension of the molecular mechanisms at the heart of neurodegeneration.  相似文献   

18.
Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP.The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k +1) and the reverse dissociation step (k –1).k –1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement ofk –1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP.k +1 was affected little by NADH oxidation. The dissociation constant (K d ATP) increased many orders of magnitude during the transition from nonenergized to energized states.  相似文献   

19.
Heart mitochondria from female senescence-accelerated (SAMP8) and senescence-resistant (SAMR1) mice of 5 or 10 months of age, were studied. Mitochondrial oxidative stress was determined by measuring the levels of lipid peroxidation, glutathione and glutathione disulfide and glutathione peroxidase and reductase activities. Mitochondrial function was assessed by measuring the activity of the respiratory chain complexes and ATP content. The results show that the age-dependent mitochondrial oxidative damage in the heart of SAMP8 mice was accompanied by a reduction in the electron transport chain complex activities and in ATP levels. Chronic melatonin administration between 1 and 10 months of age normalized the redox and the bioenergetic status of the mitochondria and increased ATP levels. The results support the presence of significant mitochondrial oxidative stress in SAM mice at 10 months of age, and they suggest a beneficial effect of chronic pharmacological intervention with melatonin, which reduces the deteriorative and functional oxidative changes in cardiac mitochondria with age.  相似文献   

20.
Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr2, we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr1 or Hmr1, respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr2 is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr2. This indel is thus a polymorphism that can affect the HI function of Lhr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号