首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The pathogenicity of chronic gastroduodenal diseases is very often related to Helicobacter pylori infections. Most H. pylori strains carry the cagA gene encoding an immunodominant 120- to 128-kDa protein which is considered a virulence marker. The majority of CagA-positive H. pylori isolates also produce a 95-kDa protein cytotoxin (VacA) causing vacuolation and degradation of mammalian cells. In our previous study we have shown that live H. pylori bacteria and their sonicates inhibit PHA-driven proliferation of human T lymphocytes. The H. pylori CagA and VacA proteins were suspected of a paralyzing effect of H. pylori on T cell proliferation. In this report, by using isogenic H. pylori mutant strains defective in CagA and VacA proteins, we determined that CagA is responsible for the inhibition of PHA-induced proliferation of T cells.  相似文献   

2.
3.
Helicobacter pylori infection is an aetiological cause of gastric disorders worldwide. H. pylori has been shown to assimilate and convert host cholesterol into cholesteryl glucosides (CGs) by cholesterol-α-glucosyltransferase encoded by capJ. Here, we show that CapJ-deficient (ΔcapJ) H. pylori resulted in greatly reduced type IV secretion system (TFSS)-associated activities, including the hummingbird phenotype of AGS cells, IL-8 production, CagA translocation/phosphorylation and CagA-mediated signalling events. Complementation of the ΔcapJ mutation with wild type cagJ or by adding CGs-containing lysates or exogenous fluorophore-tagged CGs reversed the mutant phenotypes. We also show that the wild-type but not ΔcapJ H. pylori recruited raft-associated components to sites of bacterial attachment. Fluorescence recovery after photobleaching (FRAP) analysis of AGS cells treated with fluorescence-tagged cholesterol/CGs revealed that there was a higher proportion of CGs associated with immobile fractions. CGs-associated membranes were also more resistant to a cold detergent extraction. Thus, we propose that CGs synthesized by H. pylori around host-pathogen contact sites partition in detergent-resistant membranes (DRMs), alters lateral-phase segregation in membrane and reorganizes membrane architecture. These processes together promote the formation of a functional TFSS and H. pylori infection.  相似文献   

4.
Helicobacter pylori is one of the most common bacterial pathogens, infecting about 50% of the world population. The presence of a pathogenicity island (PAI) in H. pylori has been associated with gastric disease. We present evidence that the H. pylori protein encoded by the cytotoxin-associated gene A ( cagA ) is translocated and phosphorylated in infected epithelial cells. Two-dimensional gel electrophoresis (2-DE) of proteins isolated from infected AGS cells revealed H. pylori strain-specific and time-dependent tyrosine phosphorylation and dephosphorylation of several 125–135 kDa and 75–80 kDa proteins. Immunoblotting studies, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), cell fractionation and confocal microscopy demonstrated that one of the 125–135 kDa proteins represents the H. pylori CagA protein, which is translocated into the host cell membrane and the cytoplasm. Translocation of CagA was dependent on functional cagA gene and virulence ( vir ) genes of a type IV secretion apparatus composed of virB4 , virB7 , virB10 , virB11 and virD4 encoded in the cag PAI of H. pylori . Our findings support the view that H. pylori actively translocates virulence determinants, including CagA, which could be involved in the development of a variety of gastric disease.  相似文献   

5.
Background. Limited data are available on the prevalence of CagA and VacA Helicobacter pylori antibodies in children. The aim of this study was to investigate the antibody prevalence to the H. pylori virulence factors CagA and VacA in symptomatic and asymptomatic children with H. pylori infection and to correlate these antibodies with the severity of gastric inflammation or density of H. pylori organisms in the gastric mucosa.
Materials and Methods. Twenty-three symptomatic children and 132 asymptomatic children with positive H. pylori serology participated in this study. Anti– H. pylori IgG antibody and CagA or VacA H. pylori antibodies were measured by enzyme immunoassay (HM-CAP; sensitivity and specificity> 90%) and Western immunoblot (Helicoblot 2.0) methods, respectively. Gastric inflammation and H. pylori density were graded histologically using the revised Sydney criteria.
Results. The prevalence of CagA and VacA antibodies were 69% and 35% in symptomatic children and 54% and 52% in asymptomatic children, respectively. Multiple regression analysis showed a correlation between CagA antibody and the severity of gastritis but no correlation with other histological features, including the number of neutrophils or lymphoid follicles. Neither antibody correlated with the degree of bacterial density in the gastric mucosa.
Conclusion. CagA and VacA H. pylori antibodies are common in the pediatric population. The combined CagA/VacA antibodies correlated weakly with the degree of mucosal inflammation.  相似文献   

6.
Hirata Y  Yanai A  Shibata W  Mitsuno Y  Maeda S  Ogura K  Yoshida H  Kawabe T  Omata M 《Gene》2004,343(1):165-172
CagA protein of Helicobacter pylori is injected into the epithelium, where CagA undergoes tyrosine phosphorylation and activates proliferation signals. However, the importance of these CagA activities for pathogenesis has yet to be resolved. The aim of this study is to analyze the genetic and functional variability of cagA gene of clinical strains in relation to gastric diseases. Thirty-six H. pylori strains were isolated from Japanese patients with various gastric diseases and examined. All 36 strains were found to contain cagA and cagE gene and to induce CagA phosphorylation upon infection. The intensity of CagA phosphorylation expressed in HeLa cells by transfection was highly correlated to the number of R1 region. The phosphorylation intensity was slightly higher in strains from chronic atrophic gastritis (CG); however, the differences were not statistically significant. These CagA proteins also activated the serum response element (SRE) reporter by 5- to 14-fold, above the level of the control. CagA proteins which lack R2 or R3 region exhibited smaller ability for SRE activation. The average of SRE activation was slightly higher in strains from cases of gastric cancer (GC; 11.4+/-1.6), MALT lymphoma (ML; 10.7+/-1.0), and chronic atrophic gastritis (CG; 11.2+/-1.6) than in those of duodenal ulcer (DU; 8.3+/-1.9) or gastric ulcer (GU; 9.0+/-1.1). In summary, most Japanese H. pylori strains contained CagA transport system and induced CagA phosphorylation, and the levels of the intensity of phosphorylation and the ability to induce SRE varied among strains. Although the association between CagA activities and disease outcome shown in this study is not very strong, variety of CagA structure, which induces variable activities, may be one of the reasons why H. pylori induces distinct diseases on host.  相似文献   

7.
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS.  相似文献   

8.
The pathogenesis of Helicobacter pylori-associated disorders is strongly dependent on a specialized type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). Cytotoxin-associated gene A (CagA) is the only known H. pylori protein translocated into the host cell followed by tyrosine phosphorylation through host protein kinases. H. pylori induces cellular processes which are either PAI- or CagA-dependent (e.g., cell motility), PAI-dependent, but CagA-independent (e.g., interleukin-8 release), or PAI- and CagA-independent (e.g., cyclooxygenase-2 release). Here, we investigated H. pylori strains mutated in single PAI genes of the wild type strain Hp26695 and their effects on cell motility. We found 17 gene products out of 27 PAI genes playing a superordinated role and five PAI-encoded proteins exhibiting a clearly critical role in motogenic host cell responses, whereas the remaining five PAI gene products had no significant influence on the motogenic response in reaction to H. pylori infection. This study clearly demonstrated that H. pylori-induced cell motility and invasive growth involve type IV secretion system-dependent signalling as well as translocated and phosphorylated CagA. These findings reveal a deeper insight in to the meaning of the T4SS of H. pylori for host cell motility.  相似文献   

9.
目的观察不同类型幽门螺杆菌(Helicobacter pylori,H.pylori)对人胃黏膜上皮细胞系GES-1细胞间隙连接蛋白(Connexin,Cx)32和43表达的影响,探讨与Cx32、Cx43表达异常有关的H.pylori菌株类型。方法将临床培养分离的不同H.pylori菌株类型包括东亚型CagA+H.pylori、西方型CagA+H.pylori及CagA-H.pylori与GES-1细胞共培养24 h及48 h,对照组不加H.pylori培养24 h及48 h。采用间接免疫荧光方法(IIF)及计算机图像分析技术检测GES-1细胞Cx32、Cx43表达。结果对照组24 h和48 h及加H.pylori各组24 h GES-1细胞Cx32、Cx43表达阳性率均为100%,东亚型CagA+H.pylori组48 h Cx32、Cx43表达阳性率均低于对照组、CagA-H.pylori组和西方型CagA+H.pylori组(P〈0.05);对照组24 h和48 h Cx32、Cx43绿色荧光位于细胞膜,西方型CagA+H.pylori组和东亚型CagA+H.pylori组24 h和48 h Cx32绿色荧光大部分位于细胞膜,少部分位于细胞浆,Cx43绿色荧光大部分位于细胞浆,少部分位于细胞膜;东亚型CagA+H.pylori组和西方型CagA+H.pylori组24 h及48 hCx32、Cx43表达强度低于对照组和CagA-H.pylori组(P〈0.05),且东亚型CagA+H.pylori组较西方型CagA+H.py-lori组减弱更明显(P〈0.05)。结论 H.pylori下调GES-1细胞Cx32、Cx43表达,以CagA+H.pylori菌株特别是东亚型CagA+H.pylori菌株作用更明显。  相似文献   

10.
Detergent-resistant membranes of eukaryotic cells are enriched in many important cellular signalling molecules and frequently targeted by bacterial pathogens. To learn more about pathogenic mechanisms of Helicobacter pylori and to elucidate novel effects on host epithelial cells, we investigated how bacterial co-cultivation changes the protein composition of detergent-resistant membranes of gastric adenocarcinoma (AGS) tissue culture cells. Using iTRAQ (isobaric tags for relative and absolute quantification) analysis we identified several cellular proteins, which are potentially related to H. pylori virulence. One of the proteins, which showed a significant infection-dependent increase in detergent resistance, was the polarity-associated serine/threonine kinase MARK2 (EMK1/Par-1b). We demonstrate that H. pylori causes the recruitment of MARK2 from the cytosol to the plasma membrane, where it colocalizes with the bacteria and interacts with CagA. Using Mardin Darby Canine Kidney (MDCK) monolayers and a three-dimensional MDCK tissue culture model we showed that association of CagA with MARK2 not only causes disruption of apical junctions, but also inhibition of tubulogenesis and cell differentiation.  相似文献   

11.
Helicobacter pylori type I strains harbour the cag pathogenicity island (cag-PAI), a 37 kb sequence,which encodes the components of a type IV secretion system. CagA, the first identified effector protein of the cag-PAI, is translocated into eukaryotic cells and tyrosine phosphorylated (CagAP-tyr) by a host cell tyrosine kinase. Translocation of CagA induces the dephosphorylation of a set of phosphorylated host cell proteins of unknown identity. CagA proteins of independent H. pylori strains vary in sequence and thus in the number and composition of putative tyrosine phosphorylation motifs (TPMs). The CagA protein of H. pylori strain J99 (CagAJ99) does not carry any of three putative tyrosine phosphorylation motifs (TPM-A, TPM-B or TPM-C) predicted by the MOTIF algorithm in CagA proteins. CagA,n is not tyrosine phosphorylated and is inactive in the dephosphorylation of host cell proteins. By site-specific mutagenesis,we introduced a TPM-C into CagA,. by replacing a single lysine with a tyrosine. This slight modification resulted in tyrosine phosphorylation of CagAJ99 and host cell protein dephosphorylation. In contrast, the removal of the indigenous TPM-C from CagAP12 did not abolish its tyrosine phosphorylation, suggesting that further phosphorylated sites are present in CagAP12. By generation of hybrid CagA proteins, a phosphorylation of the most N-terminal TPM-A could be excluded. Our data suggest that tyrosine phosphorylation at TPM-C is sufficient, but not exclusive,to activate translocated CagA. Activated CagAPtr might either convert into a phosphatase itself or activate a cellular phosphatase to dephosphorylate cellular phosphoproteins and modulate cellular signalling cascades of the host.  相似文献   

12.
Helicobacter pylori is one of the most wide-spread bacterial pathogens and infects the human stomach to cause diseases, such as gastritis, gastric ulceration, and gastric cancer. A major virulence determinant is the H. pylori CagA protein (encoded by the cytotoxin-associated gene A) which is translocated from the bacteria into the cytoplasm of host cells by a type IV secretion system. In the host cell, CagA is phosphorylated on tyrosine residues and induces rearrangements of the actin cytoskeleton. We have previously shown that tyrosine-phosphorylated CagA inhibits the catalytic activity of Src family kinases and induces tyrosine dephosphorylation of several host cell proteins. Here, we identified one of these proteins as ezrin by a combination of preparative gel electrophoresis, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Specific pharmacological inhibition of Src family kinases also induces ezrin dephosphorylation. Therefore, ezrin dephosphorylation appears to be induced by CagA-mediated Src inactivation. Ezrin is the founding member of the ezrin-radixin-moesin (ERM) family of proteins which are signalling integrators at the cell cortex. Since ezrin is a component of microvilli and a linker protein between actin filaments and membrane proteins, this observation has important implications for H. pylori pathogenesis and might also help to explain the development of gastric cancer.  相似文献   

13.
CagA, especially East Asian type, is one of the most important virulence factors of Helicobacter pylori, which is believed to contribute to the gastric cancer development. There is extreme sequence heterogeneity on 3' region of cagA gene, demonstrated by the sequence analysis of cagA of H. pylori strains isolated from gastric disease patients. However, whether such heterogeneity of the cagA gene sequence is related to the pathogenicity of H. pylori in the gastric cancer development is not certain. Therefore, in this study, the 3' region of cagA sequences isolated from asymptomatic healthy individuals in Japan and Thailand, which show high and low gastric cancer prevalence, respectively, were analyzed and compared with those from patients with gastric cancer. The CagA sequences analysis in 21 and 12 H. pylori DNA samples obtained from Japanese and Thai individuals, respectively, by the molecular phylogenetic method showed that the sequences were more conserved in the Thai individuals (concordance rates among Thai sequences, 93.9-100%) than in the Japanese individuals (concordance rates among Japanese sequences, 82.8-100%) as shown by unrooted neighbor-joining (N-J) consensus trees constructed with the sequence between Asn869 and Ala967 in CagA. CagA sequences in gastric cancer patients were obtained from published data; analysis of these sequences revealed that CagA sequences from almost all Thai individuals were concentrated in one branch. In contrast, CagA sequences from Japanese individuals were uniformly distributed throughout the N-J consensus tree. These results suggest that the difference in the CagA sequences between asymptomatic healthy Japanese and Thai individuals may be linked to the incidence of gastric cancer in Japan and Thailand.  相似文献   

14.
The CagA protein is one of the virulence factors of Helicobacter pylori, and two major subtypes of CagA have been observed, the Western and East Asian type. CagA is injected from the bacteria into gastric epithelial cells, undergoes tyrosine phosphorylation, and binds to Src homology 2 domain-containing protein-tyrosine phosphatase SHP-2. The East Asian type CagA binds to SHP-2 more strongly than the Western type CagA. Here, we tried to distinguish the CagA type by highly sensitive real-time PCR with the objective of establishing a system to detect H. pylori and CagA subtypes from gastric biopsies. We designed primers and probe sets for Western or East Asian-cagA at Western-specific or East Asian-specific sequence regions, respectively, and H. pylori 16S rRNA. We could detect the H. pylori 16S rRNA gene, Western and East Asian-cagA gene from DNA of gastric biopsies. The sensitivity and specificity for H. pylori infection was 100% in this system. In Thai patients, 87.8% (36/41) were cagA-positive; 26.8% (11/41) were Western-cagA positive and 53.7% (22/41) were East Asian-cagA positive, while 7.3% (3/41) reacted with both types of cagA. These results suggest that this real-time PCR system provides a highly sensitive assessment of CagA type as a new diagnostic tool for the pathogenicity of H. pylori infection.  相似文献   

15.
16.
17.
Helicobacter pylori CagA is delivered into gastric epithelial cells, where undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif to interact with Src homology 2-containing protein tyrosine phosphatase-2 (SHP2) oncoprotein. CagA also binds to partitioning-defective 1 (PAR1) polarity-regulating kinase via the CagA multimerization (CM) sequence. To investigate pathophysiological role of CagA-SHP2 and/or CagA-PAR1 interaction in H. pylori infection, we generated H. pylori isogenic strains producing a phosphorylation-resistant CagA and a CagA without CM sequence. Infection studies revealed that deregulation of epithelial cell motility was more prominent in the wild-type strain than in the mutant strains. Thus, both CagA-SHP2 and CagA-PAR1 interactions are involved in the pathogenicity of cagA-positive H. pylori.  相似文献   

18.
Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori) infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS) and the effector protein cytotoxin-associated gene A (CagA) of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.  相似文献   

19.
Helicobacter pylori is thought to be related to atherosclerosis and aneurysm development. We aimed to detect virulance factors of H. pylori and examine the potential etiopathogenetic relationship between aortic aneurysm and H. pylori, 58 abdominal aortic aneurysm (AAA) and 38 ascending aortic aneurysm (AsAA) cases and 57 Healty control group (HCG) were included. We investigated H. pylori IgG by ELISA and virulance factors by Western-Blot (WB) method. No difference was found between AAA (67.24%), AsAA (73.68%) and HCG (57.89%) for H. pylori IgG (p > 0.05). A significant difference was found between AsAA (78.95%) and HCG (57.89%) for H.pylori IgG (p < 0.05) by ELISA and a significant difference was found only between AsAA (100%) and HCG (37.5%) for H. pylori IgG in the 45-55 age group by WB. A statistically significant difference was found between AAA and AsAA for VacA and CagA + VacA and CagA + VacA + UreA antigens and also a significant difference was found between AsAA and HCG for CagA + UreA antigens (p < 0.05). Finally, we suggest that H. pylori VacA has a more important role than CagA in the development of two aneurysms especially in ruptured AAA. New extended studies detecting H. pylori DNA are needed to detect the aetiopathogenesis between aneurysm types and H. pylori.  相似文献   

20.
Liu Z  Xu X  Chen L  Li W  Sun Y  Zeng J  Yu H  Chen C  Jia J 《Journal of cellular biochemistry》2012,113(3):1080-1086
Infection with CagA-positive Helicobacter pylori is the strongest risk factor for gastric carcinoma. Upon delivery into gastric epithelial cells, CagA disturbs cellular functions by physically interacting with and deregulating intracellular signaling molecules via both tyrosine phosphorylation-dependent and -independent mechanisms. Runx3 was suggested to be a tumor suppressor and closely associated with tumorigenesis and progression of gastric cancer. The aim of our study is to verify the effect of H. pylori virulence factor CagA on Runx3 expression level and investigate the corresponding molecular mechanisms and signaling pathways influencing Runx3 expression. Human gastric epithelial immortalized GES-1 cells were transfected with CagA-expression vector or control vector with FuGENE HD transfection reagent. Runx3 expression levels were determined by QRT-PCR and immunoblotting. Then we constructed a 1,150 bp Runx3 promoter luciferase reporter plasmid, pGL(3)-1150 bp, which was co-transfected into GES-1 cell with CagA-expression vector or control vector. Luciferase reporter assay was used to determine the effects of CagA on the 1,150 bp promoter activity of Runx3. Signal inhibitors were used to detect the signal pathway(s) through which CagA affects Runx3. Our results showed that CagA can reduce the expression level of Runx3 at both mRNA and protein levels significantly. Importantly, the 1,150 bp Runx3 promoter activity was decreased in cells transfected with CagA-expression vector comparing with cells transfected with control vector. And this inhibition is dependent on the phosphorylation of CagA. Signal pathways Src/MEK/ERK and p38 MAPK are involved in this regulation. Our findings provide new insights for understanding the mechanism of H. pylori carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号