首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Evolutionary theory proposes that signals used in sexual selection can only be stable if they are honest and condition dependent. However, despite the fact that chemical signals are used by many animals, empirical research has mainly focused on visual and acoustic signals. Vitamin D is an essential nutrient for lizards, but in some lizards its precursor (cholesta-5,7-dien-3-ol=provitamin D) is found in femoral gland secretions, which males use for scent marking and intraspecific communication. By allocating provitamin D to secretions, males might need to divert vitamin D from metabolism. This might be costly and condition dependent. We tested whether diet quality affected chemical signals of male Iberian rock lizards (Lacerta monticola) and its consequences for sexual selection. After experimental supplementation of dietary vitamin D, males increased the proportion of provitamin D in femoral secretions. Further experiments showed that females detected these changes in males' signals by chemosensory cues, and discriminated provitamin D, and changes in its concentration, from similar steroids (i.e. cholesterol) found in secretions. Moreover, females preferred areas scent marked by males with more provitamin D in their secretions. This mechanism would confer honesty to chemical signals of male lizards, and, thus, females may rely on it to select high-quality males. We suggest that the allocation of vitamins and other essential nutrients to either visual (e.g. carotenoids) or chemical ornaments might be the common basis of honest sexual displays in many animals.  相似文献   

2.
Martín J  López P 《PloS one》2012,7(1):e30108

Background

Many animals produce elaborated sexual signals to attract mates, among them are common chemical sexual signals (pheromones) with an attracting function. Lizards produce chemical secretions for scent marking that may have a role in sexual selection. In the laboratory, female rock lizards (Iberolacerta cyreni) prefer the scent of males with more ergosterol in their femoral secretions. However, it is not known whether the scent-marks of male rock lizards may actually attract females to male territories in the field.

Methodology/Principal Findings

In the field, we added ergosterol to rocks inside the territories of male lizards, and found that this manipulation resulted in increased relative densities of females in these territories. Furthermore, a higher number of females were observed associated to males in manipulated plots, which probably increased mating opportunities for males in these areas.

Conclusions/Significance

These and previous laboratory results suggest that female rock lizards may select to settle in home ranges based on the characteristics of scent-marks from conspecific males. Therefore, male rock lizards might attract more females and obtain more matings by increasing the proportion of ergosterol when scent-marking their territories. However, previous studies suggest that the allocation of ergosterol to secretions may be costly and only high quality males could afford it, thus, allowing the evolution of scent-marks as an honest sexual display.  相似文献   

3.
Cholesta-5,7,9-trienol-3β-ol is a potent inhibitor of cholesterol biosynthesis and the enzyme 3-hydroxy-3-methyl-glutaryl CoA reductase in MRC-5 fibroblasts in culture. A similar type of inhibition is not exhibited by cholesta-5,7-dien-3β-ol, cholesta-7,9-dien-3β-ol or cholesterol.  相似文献   

4.
In spite of the importance of chemoreception in social organization of lizards, only a few studies have examined chemical composition of secretions of lizards. The secretion of the femoral glands of male lizards Psammodromus algirus contains 59 lipophilic compounds, mainly carboxylic acids between n-C9 and n-C20, and steroids (mainly campesterol, ergosterol and cholesterol), and minor components such as five alcohols, six aldehydes, squalene, α-tocopherol, ketones, and a furanone. These compounds were identified on the basis of mass spectra, obtained by GC–MS. Secretions of adult males of different age were different. Older lizards had secretions with relatively lower proportions of octadecadienoic, oleic and eicosatetraenoic acids, and higher proportions of campesterol, ergosterol, ergostenol, 4,4-dimethy-cholest-7-en-3-ol, and ergosta-5,22-dien-3-ol. These differences might allow conspecifics to get information on the age of the sender based on chemicals alone, which may have an important role in social behavior of this lizard.  相似文献   

5.
Multiple sexual signals may convey information on males' quality. However, most research focused on visual signals, ignoring chemical signals. In vertebrates, chemical signals are probably often a multicomponent mixture of several active compounds, but they are not well known. We examined the potential additive and interactive effects of 2 compounds (oleic acid and ergosterol) naturally found in femoral gland secretions of male rock lizards on chemosensory exploration behavior of females. Tongue-flick (TF) rates of females to male secretions may result from the combination of responses to multiple compounds. There may be an additive or synergetic effect because male secretions with the highest proportions of both compounds received the highest TF rates, suggesting that their scents were more intriguing. However, there might be an interactive effect too; female TF rates were higher to males' scent with high proportions of ergosterol alone, even if proportions of oleic acid were low, than to high proportions of oleic acid but with low proportions of ergosterol. Further bioassays testing TF behavior of females to standard compounds, presented alone or combined in different concentrations confirmed these findings. Variations in female TF behavior might be explained because different compounds signal different male traits of different importance for females. Our study suggested that femoral secretion of male rock lizards may act as a multicomponent chemical signal.  相似文献   

6.
This article is part of a Special Issue “Chemosignals and Reproduction”.Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species “prefer” to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual “chemical ornaments”. All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success.  相似文献   

7.
Chemoreception, symmetry and mate choice in lizards   总被引:10,自引:0,他引:10  
Research on fluctuating asymmetry (FA)-mediated sexual selection has focused almost exclusively on visual signals and ignored chemical communication despite the fact that many species rely on chemical signals for attracting mates. Female mate choice based on visual traits appears to be rare in lizards. However, the femoral glands of male lizards produce pheromones which might transmit chemical information about an individual's developmental stability. Therefore, we hypothesized that mate choice may be based on chemical cues. We analysed the effect of the developmental stability levels of males on the attractiveness of males' scents to females in a laboratory experiment with the lizard Lacerta monticola. When we offered two males of similar body size, females preferentially associated with the scents of males with low FA in their femoral pores and also with the scents of males with a higher number of femoral pores. This suggested that the females were able to discriminate the FA of the males by chemical signals alone and that the females preferred to be in areas marked by males of high quality, thus increasing their opportunities of mating with males of high quality. We suggest that the quality and/or amount of male pheromones could communicate the heritable genetic quality of a male to the female and thereby serve as the basis for adaptive female choice in lizards.  相似文献   

8.
Treatment of pregnant rats with AY-9944, a drug interfering with the last steps of cholesterol biosynthesis, accumulated cholesterol precursors in brain and liver of newborn animals. Different sterol profiles were found in these organs. Along with cholesterol and cholesta-5,7-dien-3β -ol, present in both tissues, liver was found to contain a hitherto unreported sterol, absent in brain. The structure of cholesta-5,8-dien-3β -ol was attributed to this compound by mass spectrometric, 1H, and 13C NMR analysis.  相似文献   

9.

Background

In spite that chemoreception is important in sexual selection for many animals, such as reptiles, the mechanisms that confer reliability to chemical signals are relatively unknown. European green lizards (Lacerta viridis) have substantial amounts of α-tocopherol ( = vitamin E) in their femoral secretions. Because vitamin E is metabolically important and can only be attained from the diet, its secretion is assumed to be costly. However, its role in intraspecific communication is unknown.

Methodology/Principal Findings

Here, we experimentally show that male European green lizards that received a dietary supplement of vitamin E increased proportions of vitamin E in their femoral secretions. Furthermore, our experiments revealed that females preferred to use areas scent marked by males with experimentally increased vitamin E levels in their secretions. Finally, female preferences were stronger when vitamin E differences between a pair of males'' secretions were larger.

Conclusions/Significance

Our results demonstrate that female green lizards are able to discriminate between males based on the vitamin E content of the males'' femoral secretions. We suggest that the possible cost of allocating vitamin E to secretions, which might be dependent on male quality, may be a mechanism that confers reliability to scent marks of green lizards and allows their evolution as sexual signals.  相似文献   

10.
Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.  相似文献   

11.
In spite of the importance of chemoreception and chemical signals in the social organization of lizards, there are only a few studies examining the chemical composition of secretions of lizards used for scent marking. The secretion of the femoral glands of male Iberian rock lizards (Lacerta monticola cyreni) contains 44 lipophilic compounds, including several steroids (mainly cholesterol), and n-C6 to n-C22 carboxylic acids, and minor components such as esters of carboxylic acids, alcohols, squalene, and one lactone. These compounds were identified on the basis of mass spectra, obtained by GC-MS. Most lipids were detected in all individuals, although relative proportions of each chemical show a high interindividual variability. This variability might be related to the characteristics or physical and health condition of males and might be the basis of female choice based on chemical cues observed in this lizard species.  相似文献   

12.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

13.
Organisms partition resources into life-history traits in order to maximise fitness over their expected lifespan. For the males of many species fitness is determined by qualitative and quantitative aspects of costly sexual signals: The notion that epigamic traits are costly forms the cornerstone of those theories that propose parasites drive sexual selection. Consequently studies examining this notion assume sexual signalling is honest (i.e. driven by cost) when they seek to identify correlations or causal links between male immune function and attractiveness. We demonstrate that immune challenged males of the mealworm beetle, Tenebrio molitor, increased their investment in epigamic pheromone signals: these males became significantly more attractive to females whilst increasing the activity of a key immune effector system. In other words males increase terminal reproductive effort (invest in attractiveness) in response to a survival threat (immune insult). Consequently the signal preferred by the female is dishonest when considering the male's condition.  相似文献   

14.
Sexual signals can be evolutionarily stable if they are honest and condition dependent or costly to the signaler. One possible cost is the existence of a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide) without pathogenic effects to explore whether the immune activation affected sexually dimorphic visual ornaments. Ventrolateral coloration changed in all males, but immune activation affected some characteristics of coloration of experimental males (i.e., challenged males failed to increase brightness and medium wavelengths over time as control males did, and the proportion of yellow pigments decreased after the immune activation) but not others (i.e., proportion of blue, green and red pigments changed equally in all males). Results suggested the existence of a trade-off between physiological regulation of the immune system and the allocation of essential compounds (probably carotenoids) to sexual ornaments. We suggest that this trade-off may allow one to honestly signal individual male quality via characteristics of coloration in lizards, which may have an important role in both intra- and intersexual selection processes.  相似文献   

15.
Scent may signal fighting ability in male Iberian rock lizards   总被引:1,自引:0,他引:1  
Intrasexual competition favours the evolution of conspicuous fighting ability badges. However, in spite of the fact that chemoreception is important in sexual selection of many animals, such as lizards, the role of chemical signals in males' contests is relatively unknown. Here, we show that proportions of cholesterol in femoral gland secretions of male Iberian rock lizards were related to their body size (which confers a competitive advantage in fights). Males discriminated chemically and responded aggressively to cholesterol stimuli presented on swabs. Moreover, we experimentally increased cholesterol in the scent of males, and staged encounters in neutral cages between two unfamiliar and size-matched males. Focal males lost more agonisitic interactions against males manipulated with cholesterol than in control tests. We suggest that differences in scent composition may reliably signal fighting ability in many lizard species, which would help to avoid the costs of fighting.  相似文献   

16.
Intraspecific variation in morphology has often been related to fitness differences through its effects on performance. In lizards, variation in hind limb length can be shaped by natural selection for increased locomotor performance, sexual selection on the number or size of femoral pores involved in chemical signalling, or both. Here, we analyse the selective forces involved in sexual dimorphism and differences in hind limb length between two populations of Psammodromus algirus living at different elevation. Males were more robust and had longer hind limbs and limb segments than females, and low‐elevation lizards had longer limbs than high‐elevation lizards. However, differences in locomotor performance were small and non‐significant, making natural selection for faster runs an unlikely explanation for the observed pattern. On the other hand, males had more femoral pores than females, and lizards had more pores at lower elevation, although the difference was significant only for males (which invest more in chemical signalling). In males, the number of pores, which remains constant along a lizard's life, was not correlated with hind limb length. However, femur length was positively correlated with mean pore size, allowing low‐elevation males to have larger than expected pores, which could increase the effectiveness with which they spread their signals in a dry and warm habitat where chemicals become volatile rapidly. Also, saturation of the sexual coloration of the head was higher for low‐elevation males, suggesting that sexual selection pressures may be more intense. Overall, our results indicate that sexual selection plays a significant role in shaping intraspecific variation in hind limb length. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 318–329.  相似文献   

17.
Steroidal allenes, stigmasta-5,24(28),28-trien-3β-ol (allene-I) and cholesta-5,23,24-trien-3β-ol (allene-II), were tested for their inhibitory effects on growth, development, and steroid metabolism in the silkworm, Bombyx mori. The allenic analogue (I) of stigmasta-5,24(28)-dien-3β-ol (2) was found to be a specific inhibitor for the conversion of stigmast-5-en-3β-ol (1) to stigmasta-5, 24(28)-dien-3β-ol (2) and/or stigmasta-5,24(28)-dien-3β-ol (2) to 24,28-epoxy-stigmast-5-en-3β-ol (3) This inhibitor held the larvae in the second instar for more than 20 days without developing to the third instar, when administered alone or with the dietary sterols of stigmast-5-en-3β-ol (1) or stigmasta-5,24(28)-dien-3β-ol (2). The second allene (II) with a similar structure to cholesta-5,24-dien-3β-ol (4) was also found to be an inhibitor for insect growth and development, but it appeared not to be acting via inhibition of sterol dealkylation.  相似文献   

18.
The sterol composition of the cold water brown alga Agarum cribosum was determined by GC—MS. Six of the seven sterols found were identified as stigmata-5,(E)-24(28)-dien-3β-ol (fucosterol), 24-methylenecholest-5-en-3β-ol (24-methylenecholesterol), cholest-5-en-3β-ol (cholesterol), 3β-hydroxycholest-5-en-24-one (24-ketocholesterol), 24ξ-stigmasta-5,28-diene-3β,24-diol (saringosterol) and cholesta-5, 24-dien-3β-ol (desmosterol).  相似文献   

19.
  • 1.1. Δ5,7-sterols have been isolated as pure compounds from the marine sponges Ircinia pipetta (Dictyoceratida:Thorectidae) and Dysidea avara (Dictyoceratida:Dysideidae) by reverse phase HPLC and analyzed by GLC, u.v., mass spectrometry and 1H-NMR.
  • 2.2. Ircinia pipetta and D. avara have rather similar sterol compositions and contain predominantly Δ5,7-sterols, accompaned by Δ5-sterols. Ergosterol, cholesta-5,7-dien-3β-ol and 24-ethylcholesta-5,7-dien-3β-ol are the major sterols in I. pipetta, while D. avara contains in addition to these three sterols, (24Z)-24-ethylcholesta-5,7,24(28)-trien-3β-ol as the fourth major sterol.
  • 3.3. Cholesta-5,7,24-trien-3β-ol which previously was not isolated from a marine organism is also present.
  相似文献   

20.
The sterol content of the marine sponge Crambe crambe has been determined. The major components of the mixture are cholest-7-en3β-ol, 24-methylcholesta-7,22-dien-3β-ol and cholesta-7,22-dien-3β-ol. Significative quantities of the rare 4α-methyl-5α-cholest-8-en3β-ol are also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号