首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
During Tetrahymena conjugation gamic nuclei (pronuclei) are produced, reciprocally exchanged, and fused in each mate. The synkaryon divides twice; the two anterior nuclei develop into new macronuclei while the two posterior nuclei become micronuclei. The postzygotic divisions were blocked with the antitubulin drug nocodazole (ND). Then pronuclei (gamic nuclei) developed directly into macronuclear anlagen (primordial macronuclei), inducing amicronucleate cells with two anlagen, or, rarely, cells with one anlagen and one micronucleus. ND had a similar effect on cells that passed the first postzygotic division inducing amicronucleate cells with two anlagen, while cells treated with ND at the synkarya stage produced only one large anlage. Different intracytoplasmic positioning of the nuclei treated with ND (pronuclei, synkarya and two products of the first division) shows that most of cell cytoplasm is competent for inducing macronuclear development. Only posteriorly positioned nuclei--products of the second postzygotic division--remain micronuclei. The total cell DNA content, measured cytophotometrically in control and in ND-induced amicronucleate conjugant cells with one and two anlagen, was similar in all three samples at 12 h of conjugation. Eventually, at 24 h this content was about 2 pg (8 C) per anlagen both in nonrefed control and in amicronucleate exconjugants. Therefore "large" nuclei developing in the presence of ND were true macronuclear anlagen.  相似文献   

2.
3.
4.
Genomic exclusion is an aberrant form of conjugation of Tetrahymena thermophila in which the genome of a defective conjugant is excluded from the genotype of the exconjugant progeny. This paper is concerned with the cytogenetic and nucleocytoplasmic events of genomic exclusion in senescent clones A*III and C*. In crosses between A*III or C* and strain B, functional, haploid gametic nuclei are formed only in the strain B cell. In some instances one of the gametic nuclei divides prior to transfer of the migratory gametic nucleus, and both products then undergo DNA synthesis. Two alternative cytogenetic pathways are followed after transfer of the migratory nucleus. In the first, the conjugants separate without further micronuclear divisions. This pathway was most common in A*III genomic exclusion. In exconjugants the former gametic nuclei undergo both DNA synthesis and (presumably) intranuclear separation of centromeres to restore micronuclear diploidy. The old macronucleus of each exconjugant is retained without autolysis. This class of exconjugant survives and contributes genes to future sexual progeny. In the second cytogenetic pathway the gametic nuclei divide and macronuclear anlagen are formed, as in normal conjugation. This pathway was more common in C* genomic exclusion. The initial DNA content of the anlagen ranges from haploid to diploid. Following two to three rounds of DNA synthesis, further macronuclear development ceases and the anlagen appear to undergo autolysis. The old macronucleus condenses and also undergoes autolysis, as in normal conjugation. Except for rare C* exconjugants, in which macronuclear development is completed, anlagen-bearing genomic exclusion exconjugants die. Death may be caused by aneuploidy, errors in the timing or receptivity to signals for autolysis, or the inability of anlagen-bearing exconjugants to feed. Anlagenbearing conjugants are frequently abnormal with respect to the number of anlagen and micronuclei. Most of the anomalies can be explained by postulating errors in the timing of both developmental signals and nuclear divisions. Rare conjugants in which gametic nuclei divide but do not give rise to macronuclear anlagen are also observed. In these instances, the old macronuclei condense and undergo autolysis. Destruction of the old macronucleus therefore is independent of the presence of macronuclear anlagen and requires cell pairing in order to be initiated.  相似文献   

5.
6.
SYNOPSIS. Doublet Paramecium tetraurelia would be expected to contain 2 macronuclei if their nuclear complement were strictly analogous to that of singlets. However, most doublets are unimacronucleate. It is shown in this study that dimacronucleate cells are present only in young clones. Unimacronucleate cells arise either through abnormalities in the determination and distribution of macronuclear anlagen during the first cell cycle after conjugation, or from dimacronucleate cells through abnormal division and segregation of macronuclei during the fission process. When a change in the number of macronuclei occurs through abnormalities in the division and segregation of daughter macronuclei, the daughter cells produced typically have DNA contents more similar than those expected from either random segregation of daughter macronuclei, or from the normal segregation pattern in ciliates in which changes in the number of macronuclei in progeny cells do not occur. This suggests that part of the regulation process of macronuclear DNA content in Paramecium may occur through control of the segregation pattern of daughter macronuclei.  相似文献   

7.
Macronuclear Regeneration and Cell Division in Paramecium caudatum   总被引:1,自引:0,他引:1  
SYNOPSIS. In Paramecium caudatum , occurrence of macronuclear regeneration is closely related to the time of feeding after conjugation. Macronuclear regeneration is induced with a high frequency when conjugating pairs are transferred into fresh culture medium. Feeding immediately after conjugation induces early cell division and 3 or more fissions occur without macronuclear division because of the inability of the macronuclear anlagen to divide. In the cells lacking normal macronuclear anlagen, old macronuclear fragments undergo regeneration and form vegetative macronuclei.  相似文献   

8.
In Paramecium exconjugants very rapid DNA synthesis takes place in the developing macronuclear anlagen, while DNA synthesis is suppressed in macronuclear fragments. The rate of DNA synthesis in fragments (as a percentage of the rate in anlagen or macronuclei in the same cells) decreases by about 40% during each successive cell cycle over at least the first five cell cycles after conjugation, even though macronuclear anlagen are fully mature by the end of the second cell cycle. — Suppression of DNA synthesis in macronuclear fragments is reversible. If macronuclear anlagen are removed at fission, a very high rate of DNA synthesis resumes in macronuclear fragments after a two-hour lag. The total rate of synthesis in the ensemble of macronuclear fragments in cells without anlagen is greater than that in anlagen in control cells. Thus, suppression of DNA synthesis in macronuclear fragments is not the result of any stable differentiation or irreversible change in the fragments but is the result of, and dependent on, the presence of macronuclear anlagen. — The results of injection of cytoplasm from vegetative cells into normal exeonjugants suggest that normal macronuclei produce an inhibitor which selectively suppresses DNA synthesis in macronuclear fragments. In control cells the relative rate of DNA synthesis in fragments ranged from 40 to 70% of that in anlagen in the same cells, while in injected cells the relative rate of incorporation of DNA precursors was suppressed to as little as 7%. The mean level of incorporation into fragments in injected cells was significantly lower than that in controls, suggesting that the injected cytoplasm contained an inhibitor.Contribution 822, Zoology Department, Indiana University. Supported in part by contract COO-235-66 of the USAEC and by grant No. Gm 15410-05 of the USPHS to T. M. Sonneborn.This paper is a portion of a dissertation submitted in partial fulfillment of the equirements for the degree of Doctor of Philosophy.  相似文献   

9.
Some stages of macronuclear anlagen development, known from earlier investigations (see Fig. 1), were studied in detail. The results are: a) The giant chromosomes of Stylonychia mytilus are not somatically paired, but are connected end-to-end to form one or a few composite chromosomes. When they later disintegrate, the bands become isolated granules. b) Spectrophotometric measurements show that during the DNA-poor stage which follows the disintegration of the chromosomes, the macronuclear anlagen of Euplotes have a DNA content of 21 c, while the syncaryotic (deriving from syncarya) and hemicaryotic (deriving from haploid hemicarya) anlagen of Stylonychia have the DNA content of diploid micronuclei (2c). Nevertheless the syncaryotic anlagen of Stylonychia and Euplotes initially develop two nucleoli at the end of this stage, the hemicaryotic anlagen of Stylonychia only one. From this it is concluded that the genes of one giant chromosome band stay together in one granule, c) Labeled DNA from the giant chromosomes which remains in the anlagen during the DNA-poor stage is distributed approximately equally to the daughter nuclei during the first few fissions of the exconjugants.-Autoradiographic experiments showed that the DNA of the macronuclei of Stylonychia that is duplicated at one time in a replication band is not duplicated simultaneously during the next DNA-duplication. The DNA duplications during the second polyploidization stage of the macronuclear anlagen development are exceptions, because the mixing of the macronuclear DNA which occurs before every fission does not occur during the second polyploidization stage.—The pseudomicronuclei which sometimes are formed from the macronuclei in emicronucleated strains of Stylonychia contain numerous elements which are much smaller than the chromosomes.—The macronucleus of Stylonychia is very insensitive to irradiation with X-rays.—The results lead to the following hypothesis: The macronuclei of the two hypotrich ciliates contain unconnected chromomeres or small aggregates which are distributed at random to the two daughter nuclei during the divisions.Research supported by the Deutsche Forschungsgemeinschaft.  相似文献   

10.
Paramecium aurelia exconjugants contain new macronuclear anlagen and numerous fragments of the old pre-zygotic macronucleus. Macronuclear anlagen develop during the first two cell cycles after conjugation. During this time their volume increases from about 11 m3 to about 3700 m3 and more than 10 doublings of DNA content occur. The rate of DNA synthesis is between two and three times as great as in the vegetative macronucleus. — In macronuclear fragments, however, DNA synthesis is suppressed. The rate of DNA synthesis in macronuclear fragments during the extended first cell cycle after conjugation (11 1/2 hr. vs. 5 1/2 hr. for the vegetative cell cycle) is only about one-third of the rate in vegetative macronuclei and there is only a 65% increase in the mean DNA content of fragments. The rate of fragment DNA synthesis continues to decrease during each of the subsequent two cell cycles. — Unlike the rate of DNA synthesis, the rate of RNA synthesis per unit of DNA is similar in macronuclear anlagen, macronuclear fragments and fully developed macronuclei. Macronuclear fragments continue to synthesize RNA at the normal rate long after the new macronuclei are fully developed. Fragments contribute about 80% of all RNA synthesized during the first two cell cycles after conjugation. RNA synthesis begins very early in the development of macronuclear anlagen and nucleolar material appears during the first half-hour of anlage development. — Chromosome-like structures were never observed during anlage development and there was no evidence of two periods of DNA synthesis separated by a DNA poor stage as has been observed in several hypotrichous Ciliates.  相似文献   

11.
Kazuyuki Mikami 《Chromosoma》1979,73(1):131-142
An exconjugant cell of Paramecium caudatum has two kinds of macronuclei, fragmented prezygotic macronuclei and postzygotic new macronuclei (anlagen). Although the DNA synthesis in the fragmented prezygotic macronucleus continues until the third cell cycle after conjugation, selective suppression of the DNA synthesis in the prezygotic macronucleus takes place at the fourth cell cycle. The inhibition of DNA synthesis in prezygotic fragmented macronuclei is due to the presence of a postzygotic macronucleus (anlage) in the same cytoplasm because the inhibition does not occur when the postzygotic macronucleus (anlage) is removed by micromanipulation during the third or fourth cell cycle. Well-developed postzygotic macronuclei (anlagen) with full ability to divide have the ability to depress the DNA synthesis of prezygotic macronuclear fragments. The suppression of DNA synthesis in prezygotic macronuclear fragments seems to be irreversible. Competition for the limited amount of DNA precursors also plays an important role in the onset of the selective suppression of the DNA synthesis.  相似文献   

12.
Autoradiography has been used to confirm and to extend previous microspectrophotometric studies (Doerder and DeBault, 1975) on the timing of DNA synthesis during conjugation in Tetrahymena thermophila. The majority of DNA synthesis occurs at the expected periods preceding gamete formation and the two postzygotic divisions and during macronuclear development. DNA in new macronuclei is endoreplicated in an extremely discontinuous fashion. Under starvation conditions, the first endoreplication (2C to 4C) occurs immediately after the second postzygotic division when both new macronuclei and new micronuclei replicate. The second endoreplication (4C to 8C) does not occur until after separation of conjugants. If mating cells are kept under prolonged starvation conditions (20-24 hr), refeeding induces a partially synchronous division, after which an unexpectedly high percentage of cells incorporate tritiated thymidine into both macro- and micronuclei. Two previously undescribed periods of DNA synthesis were observed in the micronuclei of conjugating Tetrahymena. The first occurs during the early stages of meiotic prophase, before full crescent elongation. The second takes place in an extended period corresponding to macronuclear anlagen development, before conjugants have separated. CsCl gradient analyses indicate that, in micronuclear fractions, only main band DNA is being synthesized in both of these periods. However, in macronuclear fractions from both stages, a significant fraction (approximately 20%) of the DNA being synthesized has the buoyant density of ribosomal DNA. The finding that macro- and micronuclear DNA can be synthesized simultaneously in a single cell, both during conjugation and after refeeding starved exconjugants, raises interesting questions of how macro- or micronuclear-specific histones are targeted to the appropriate nuclei.  相似文献   

13.
The hypotrichous ciliate Keronopsis rubra has ~10 micronuclei and ~100 small macronuclei. DNA synthesis proceeds synchronously in all macronuclei in the 2nd half of the cell cycle which takes about 24 hr at room temperature. A G2 phase is virtually absent, each nucleus dividing as soon as the replication band has passed over it. The micronuclear S phase falls within macronuclear G1 and is followed by immediate division. Comparative cytophotometric measurements of Feulgen-stained preparations indicate that the DNA content of G1 macronuclei is scattered widely in a skewed normal distribution, with a peak corresponding to the DNA content of a G1 micronucleus. Measurements of dividing macronuclei indicate unequal distribution of DNA between daughter nuclei and lead to the conclusion that the units of assortment must be smaller than whole genomes unless the micronucleus is polyploid. After conjugation, a large macronuclear anlage with threads resembling split prophase chromosomes is formed. The threads condense and pass singly into the cytoplasm where they are thought to give rise to the numerous small macronuclei of the vegetative cells.  相似文献   

14.
15.
During the postzygotic period of the sexual cycle (conjugation) in the ciliated protozoan, Tetrahymena, daughter products from a single micronuclear mitotic division develop into new macronuclei (anlagen) or new micronuclei depending upon their cytoplasmic location. In this study we have monitored the status of histone acetylation in synchronous populations of developing nuclei isolated from conjugating cells. Particular attention has been paid to the level of histone acetylation in new macronuclei following their differentiation from micronuclei. Like micronuclei isolated from vegetative cells (Vavra et al., 1982), micronuclei from conjugating cells (5 hr, 10-12 hr, and 15-16 hr) contain little if any acetylated histone and incorporate little postsynthetic acetate under any of our experimental conditions. In contrast, young new macronuclei (4C, 10-12 hr) incorporate significant amounts of acetate in vitro and in vivo provided that sodium butyrate is included during the labeling period. These results suggest that 4C anlagen contain both active acetylase and deacetylase activities even though the actual steady state level of acetylation found in these nuclei is low, more like that of micronuclei. At later stages of macronuclear maturation (8C, 15-16 hr), inner histones are hyperacetylated in a manner similar to parental, fully differentiated macronuclei. Furthermore, 8C anlagen incorporate acetate well even in the absence of sodium butyrate. Taken together these results suggest that endogenous deacetylase enzymes become either down-regulated and/or the rate of histone acetylases increases markedly during macronuclear differentiation.  相似文献   

16.
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.  相似文献   

17.
After conjugation in Tetrahymena thermophila, the old macronuclei degenerate, and new macronuclei (anlagen) develop. During anlagen development a number of DNA sequences found in the micronuclear genome (micronuclear limited sequences) are eliminated from the anlagen. A cloned copy of a repetitive micronuclear limited sequence has been used to determine the developmental stage at which micronuclear limited sequences are eliminated. DNAs from anlagen of various developmental stages were examined by Southern analysis. It was found that micronuclear limited sequences are present in 4C anlagen and essentially absent in 8C and 16C anlagen. The precipitous loss of these sequences in the 8C anlagen rules out under-replication as the mechanism for the loss and suggests that these sequences are specifically degraded early during anlagen development.  相似文献   

18.
在25℃条件下,冠突伪尾柱虫接合生殖全程历时10天左右。接合生殖过程中的核器演化包括:①数十枚老的大核逐步瓦解。电镜观察表明,老的大核是以一种类似于食物泡消化的方式被吸收的,并在此过程中伴有大量溶酶体出现。②仅8枚左右小核中的一枚参与新核器的发生。首先,位于胞口后部的一枚小核膨大并进行一次预备分裂,接着发生三次成熟分裂。每一接合体内形成一枚雄原核和一枚雌原核。雄原核互向对方迁移并与其雌原核融合成为合子核。合子核分裂两次,四枚子核之一发育为大核原基,另一枚发育为小核原基,其余两枚退化。预备分裂和前两次成熟分裂各自产生的两枚子核中,仅一枚进入下一次分裂,另一枚解体消失。在第一次成熟分裂前期,“降落伞”的形成和发展经历着复杂的结构变化,持续一小时以上。③大核原基经过长时间的发育,伴有多线染色体的形成和解体等一系列变化,方达成熟状态。成熟的大核原基以伸长断裂、分叉断裂和哑铃形缢缩三种方式进行分裂,小核原基亦随之分裂,逐步形成具60枚左右大核、8枚左右小核的正常营养体。其后,大核融合,开始配后第一次无性分裂。值得注意的是,大核原基发育到将成熟时,最初的迹象是染色质向大核原基中央集结成团,染色质团与核膜之间充满着匀质的核液。当中央染色质团伸长时,又将  相似文献   

19.
Following conjugation in ciliates, the usual fate of the old pre-conjugant macronucleus is resorption. In some species, however, old macronuclei, or their fragments, have the ability to reform functional vegetative macronuclei when new macronuclear anlagen are defective. The present work on Euplotes shows that if anlagen are allowed to carry out their essential roles in early exconjugant development, including influence on cortical reorganization such that feeding can resume, they can then be permanently damaged by UV-microbeam irradiation and regeneration of old macronuclear fragments can occur. E. aediculatus exconjugants were anlage-irradiated at 40–60 hr of development and the irradiated cells cultured individually and fed. Squashes revealed enlargement and anteriorward migration of the persistent (posterior) macronuclear fragments. The first post-conjugant fission of such cells was delayed (times ranged 6–43 days) and did not seem to involve the damaged anlagen, which remained rudimentary, did not divide along with the cells, and were subsequently resorbed. It appeared that cell fission was supported by the fragments of the old macronuclei, which either divided or partitioned themselves between the two daughter cells. Mating tests performed on early clones derived from irradiated exconjugants revealed ample conjugation competence; intraclonal conjugation in such clones was also apparent. The absence of the immature period seen in normal exconjugants provides further evidence that the clones arose from cells with regenerated macronuclei.  相似文献   

20.
Histone synthesis and deposition into specific classes of nuclei has been investigated in starved and conjugating Tetrahymena. During starvation and early stages of conjugation (between 0 and 5 hr after opposite mating types are mixed), micronuclei selectively lose preexisting micronuclear-specific histones α, β, γ, and H3F. Of these histones, only α appears to accumulate in micronuclear chromatin through active synthesis and deposition during the mating process. Curiously, α is not observed (by stain or label) in young macronuclear anlagen (4C, 10 hr of conjugation). Thus, young macronuclear anlagen are missing all of the histones which are known to be specific to micronuclei of vegetative cells. By 14–16 hr of conjugation, we observe active synthesis and deposition of macronuclear-specific histones, hv1, hv2, and H1, into new macronuclear anlagen (8C). Thus macronuclear differentiation seems well underway by this time of conjugation. It is also in this time period (14–16 hr) that we first detect significant amounts of micronuclear-specific H1-like polypeptides β and γ in micronuclear extracts. These polypeptides do not seem to be synthesized during this period, which suggests that β and γ are derived from a precursor molecule(s). Since these micronuclear-specific histones do not appear in micronuclear chromatin until after other micronuclei have been selected to differentiate as macronuclei, we suspect that micronuclear differentiation is also an important process which occurs in 10–16 hr mating cells. Our results also suggest that proteolytic processing of micronuclear H3S into H3F (which occurs in a cell cycle dependent fashion during vegetative growth) is not operative during most if not all of conjugation. Thus micronuclei of mating cells contain only H3S which also seems consistent with the fact that some micronuclei differentiate into new macronuclei (micronuclear H3S is indistinguishable from macronuclear H3). Interestingly, the only H3 synthesized and deposited into the former macronucleus of mating cells is the relatively minor macronuclear-specific H3-like variant, hv2. These results demonstrate that significant histone rearrangements occur during conjugation in Tetrahymena in a manner consistent with the fact that during conjugation some micronuclei eventually differentiate into new macronuclei. Our results suggest that selective synthesis and deposition of specific histones (and histone variants) plays an important role in the nuclear differentiation process in Tetrahymena. The disappearance of specific histones also raises the possibility that developmentally regulated proteolytic processing of specific histones plays an important (and previously unsuspected) role in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号