首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.  相似文献   

3.
Jin J  Watt M  Mathesius U 《Plant physiology》2012,159(1):489-500
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO(2)) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root.  相似文献   

4.
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.  相似文献   

5.
Plant genes induced during early root colonization of Medicago truncatula Gaertn. J5 by a growth-promoting strain of Pseudomonas fluorescens (C7R12) have been identified by suppressive subtractive hybridization. Ten M. truncatula genes, coding proteins associated with a putative signal transduction pathway, showed an early and transient activation during initial interactions between M. truncatula and P. fluorescens, up to 8 d after root inoculation. Gene expression was not significantly enhanced, except for one gene, in P. fluorescens-inoculated roots of a Myc(-)Nod(-) genotype (TRV25) of M. truncatula mutated for the DMI3 (syn. MtSYM13) gene. This gene codes a Ca(2+) and calmodulin-dependent protein kinase, indicating a possible role of calcium in the cellular interactions between M. truncatula and P. fluorescens. When expression of the 10 plant genes was compared in early stages of root colonization by mycorrhizal and rhizobial microsymbionts, Glomus mosseae activated all 10 genes, whereas Sinorhizobium meliloti only activated one and inhibited four others. None of the genes responded to inoculation by either microsymbiont in roots of the TRV25 mutant. The similar response of the M. truncatula genes to P. fluorescens and G. mosseae points to common molecular pathways in the perception of the microbial signals by plant roots.  相似文献   

6.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

7.
8.
One of the most important morphological changes occurring in arbuscular mycorrhizal (AM) roots takes place when the plant plasma membrane (PM) invaginates around the fungal arbuscular structures resulting in the periarbuscular membrane formation. To investigate whether AM symbiosis-specific proteins accumulate at this stage, two complementary MS approaches targeting the root PM from the model legume Medicago truncatula were designed. Membrane extracts were first enriched in PM using a discontinuous sucrose gradient method. The resulting PM fractions were further analysed with (i) an automated 2-D LC-MS/MS using a strong cation exchange and RP chromatography, and (ii) SDS-PAGE combined with a systematic LC-MS/MS analysis. Seventy-eight proteins, including hydrophobic ones, were reproducibly identified in the PM fraction from non-inoculated roots, representing the first survey of the M. truncatula root PM proteome. Comparison between non-inoculated and Glomus intraradices-inoculated roots revealed two proteins that differed in the mycorrhizal root PM fraction. They corresponded to an H(+)-ATPase (Mtha1) and a predicted glycosylphosphatidylinositol-anchored blue copper-binding protein (MtBcp1), both potentially located on the periarbuscular membrane. The exact role of MtBcp1 in AM symbiosis remains to be investigated.  相似文献   

9.
Quantitative proteome analyses of meristematic and nonmeristematic tissues from Medicago truncatula primary and lateral roots and meristem tissues from plants treated with acetohydroxyacid synthase-inhibiting herbicides were made. The accumulation of 81 protein spots changed in meristematic and nonmeristematic tissues and 51 protein spots showed significant changes in accumulation in herbicide-treated meristems. Identified proteins indicate two trends, (i) increased accumulation of cell division and redox-mediating proteins in meristems compared to nonmeristematic tissues and (ii) increased accumulation of pathogenesis-related and decreased accumulation of metabolic proteins in herbicide-treated roots.  相似文献   

10.
The root accumulation and excretion of riboflavin (Rbfl) and Rbfl derivatives have been studied in the model legume species Medicago truncatula, grown in hydroponics in two different Fe deficiency conditions, with and without CaCO(3). Using high resolution mass spectrometry techniques coupled to liquid chromatography, three different flavin derivatives not previously reported in plants, putatively identified as 7-hydroxy-Rbfl, 7α-hydroxy-Rbfl and 7-carboxy-Rbfl, were found along with Rbfl in Fe-deficient M. truncatula roots. In the presence of CaCO(3) most of the flavins were accumulated in the roots, whereas in the absence of CaCO(3) there was partial export to the nutrient solution. The major flavins in roots and nutrient solution were Rbfl and 7-hydroxy-Rbfl, respectively. Flavins were located in the root cortex and epidermal cells, preferentially in a root region near the apex that also exhibited increased ferric chelate reductase (FCR) activity. Six out of 15 different species of horticultural interest showed root increases in both Rbfl (four of them also having Rbfl derivatives) and FCR. No significant correlation was found between Rbfl and either phosphoenolpyruvate carboxylase or FCR activities, whereas the latter two showed a good correlation between them. The possible roles of Rbfl and Rbfl derivatives in roots and nutrient solutions are discussed. Medicago truncatula is proposed as a model system for flavin studies.  相似文献   

11.
Colditz F  Niehaus K  Krajinski F 《Planta》2007,226(1):57-71
Recent studies on the root proteome of Medicago truncatula (Gaertn.) showed an induction of pathogenesis-related (PR) proteins of the class 10 after infection with the oomycete pathogen Aphanomyces euteiches (Drechs.). To get insights into the function of these proteins during the parasitic root-microbe association, a gene knockdown approach using RNAi was carried out. Agrobacterium rhizogenes-mediated transformation of M. truncatula roots led to a knockdown of the Medicago PR10-1 gene in transgenic in vitro root cultures. Proteomic analyses of the MtPr10-1i root cultures showed that MtPr10-1 was efficiently knocked down in two MtPr10-1i lines. Moreover, five additional PR-10-type proteins annotated as abscisic acid responsive proteins (ABR17s) revealed also an almost complete silencing in these two lines. Inoculation of the root cultures with the oomycete root pathogen A. euteiches resulted in a clearly reduced colonization and thus in a suppressed infection development in MtPr10-1i roots as compared to that in roots of the transformation controls. In addition, MtPr10-1 silencing led to the induction of a new set of PR proteins after infection with A. euteiches including the de novo induction of two isoforms of thaumatin-like proteins (PR-5b), which were not detectable in A. euteiches-infected control roots. Thus, antagonistic induction of other PR proteins, which are normally repressed due to PR-10 expression, is supposed to cause an increased resistance of M. truncatula upon an A. euteiches in vitro infection. The results were also further confirmed by detecting increased PR-5b induction levels in 2-D gels of a previously analyzed M. truncatula line (F83.005-9) exhibiting increased A. euteiches tolerance associated with reduced PR-10 induction levels.  相似文献   

12.
The Medicago truncatula DMI2 gene encodes a receptorlike kinase required for establishing root endosymbioses. The DMI2 gene was shown to be expressed much more highly in roots and nodules than in leaves and stems. In roots, its expression was not altered by nitrogen starvation or treatment with lipochitooligosaccharidic Nod factors. Moreover, the DMI2 mRNA abundance in roots of the nfp, dmil, dmi3, nsp1, nsp2, and hcl symbiotic mutants was similar to the wild type, whereas lower levels in some dmi2 mutants could be explained by regulation by the nonsense-mediated decay, RNA surveillance mechanism. Using pDMI2::GUS fusions, the expression of DMI2 in roots appeared to be localized primarily in the cortical and epidermal cells of the younger, lateral roots and was not observed in the root apices. Following inoculation with Sinorhizobium meliloti, the DMI2 gene was induced in the nodule primordia, before penetration by the infection threads. No increased expression was seen in lateral-root primordia. In nodules, expression was observed primarily in a few cell layers of the pre-infection zone. These results are consistent with the DMI2 gene mediating Nod factor perception and transduction leading to rhizobial infection, not only in root epidermal cells but also during nodule development.  相似文献   

13.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   

14.
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.  相似文献   

15.
16.
SUMMARY: Low phosphorus (P) availability is a major limitation for plant growth. To better understand the molecular mechanism of P efficiency in maize, comparative proteome analyses were performed on the roots of the low-P-tolerant mutant 99038 and wild-type Qi-319 grown under P-sufficient (+P) or P-deficient (-P) conditions. Over 10% of proteins detected on two-dimensional electrophoresis (2-DE) gels showed expression that was altered twofold or more between the genotypes under +P or -P conditions. We identified 73 (+P) and 95 (-P) differentially expressed proteins in response to phosphate (Pi) starvation. These proteins were involved in a large number of cellular and metabolic processes, with an obvious functional skew toward carbon metabolism and regulation of cell proliferation. Further analysis of proteome data, physiological measurements and cell morphological observations showed that, compared to the wild-type, the low-P-tolerant mutant could accumulate and secrete more citrate under Pi starvation, which facilitates solubilization of soil Pi and enhances Pi absorption. The proportion of sucrose in the total soluble sugars of the low-P-tolerant mutant was significantly higher, and cell proliferation in root meristem was accelerated. This resulted in better developed roots and more advantageous root morphology for Pi uptake. These results indicate that differences in citrate secretion, sugar metabolism and root-cell proliferation are the main reasons for higher tolerance to low-P conditions in the mutant compared to the wild-type. Thus, the mutant displayed specialized P-efficient root systems with a higher capacity for mobilization of external Pi and increased cell division in the root meristem under Pi starvation.  相似文献   

17.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor-activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization.  相似文献   

18.
19.
? Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. ? Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. ? In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. ? We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange.  相似文献   

20.
Lateral roots are initiated from the pericycle cells of other types of roots and remain in contact with these roots throughout their life span. Although this physical contact has the potential to permit the exchange of signals, little is known about the flow of information from the lateral roots to the primary root. To begin to study these interactions the proteome of the primary root system of the maize (Zea mays L.) lrt1 mutant, which does not initiate lateral roots, was compared with the corresponding proteome of wild-type seedlings 9 days after germination. Approximately 150 soluble root proteins were resolved by two-dimensional electrophoresis and analyzed by MALDI-ToF mass spectrometry and database searching. The 96 most abundant proteins from a pH 4–7 gradient were analyzed; 67 proteins representing 47 different Genbank accessions were identified. Interestingly, 10 (15/150) of the detected proteins were preferentially expressed in lrt1 roots that lack lateral roots. Eight of these lrt1-specific proteins were identified and four are involved in lignin metabolism. This study demonstrates for the first time the influence of lateral roots on the proteome of the primary root system. To our knowledge this is the first study to demonstrate an interaction between two plant organs (viz., lateral and primary roots) at the level of the proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号