首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.  相似文献   

2.
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.  相似文献   

3.
4.
5.
Trypanosoma brucei adapts to changing environments as it cycles through arrested and proliferating stages in the human and tsetse fly hosts. Changes in protein tyrosine phosphorylation of several proteins, including NOPP44/46, accompany T. brucei development. Moreover, inactivation of T. brucei protein-tyrosine phosphatase 1 (TbPTP1) triggers differentiation of bloodstream stumpy forms into tsetse procyclic forms through unknown downstream effects. Here, we link these events by showing that NOPP44/46 is a major substrate of TbPTP1. TbPTP1 substrate-trapping mutants selectively enrich NOPP44/46 from procyclic stage cell lysates, and TbPTP1 efficiently and selectively dephosphorylates NOPP44/46 in vitro. To provide insights into the mechanism of NOPP44/46 recognition, we determined the crystal structure of TbPTP1. The TbPTP1 structure, the first of a kinetoplastid protein-tyrosine phosphatase (PTP), emphasizes the conservation of the PTP fold, extending to one of the most diverged eukaryotes. The structure reveals surfaces that may mediate substrate specificity and affords a template for the design of selective inhibitors to interfere with T. brucei transmission.  相似文献   

6.
7.
In the protozoan parasite Trypanosoma brucei, the large rRNA, which is a single 3.4- to 5-kb species in most organisms, is further processed to form six distinct RNAs, two larger than 1 kb (LSU1 and LSU2) and four smaller than 220 bp. The small rRNA SR1 separates the two large RNAs, while the remaining small RNAs are clustered at the 3' end of the precursor rRNA. One would predict that T. brucei possesses specific components to carry out these added processing events. We show here that the trypanosomatid-specific nucleolar phosphoprotein NOPP44/46 is involved in this further processing. Cells depleted of NOPP44/46 by RNA interference had a severe growth defect and demonstrated a defect in large-ribosomal-subunit biogenesis. Concurrent with this defect, a significant decrease in processing intermediates, particularly for SR1, was seen. In addition, we saw an accumulation of aberrant processing intermediates caused by cleavage within either LSU1 or LSU2. Though it is required for large-subunit biogenesis, we show that NOPP44/46 is not incorporated into the nascent particle. Thus, NOPP44/46 is an unusual protein in that it is both nonconserved and required for ribosome biogenesis.  相似文献   

8.
9.
10.
Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle.  相似文献   

11.
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to bind 5S rRNA in Trypanosoma brucei. These two proteins are nearly identical, with one major difference, an 18-amino-acid insert in the N-terminal region of p37, as well as three minor single-amino-acid differences. Homologues to p34 and p37 have been found only in other trypanosomatids, suggesting that these proteins are unique to this ancient family. We have employed RNA interference (RNAi) studies in order to gain further insight into the interaction between p34 and p37 with 5S rRNA in T. brucei. In our p34/p37 RNAi cells, decreased expression of the p34 and p37 proteins led to morphological alterations, including loss of cell shape and vacuolation, as well as to growth arrest and ultimately to cell death. Disruption of a higher-molecular-weight complex containing 5S rRNA occurs as well as a dramatic decrease in 5S rRNA levels, suggesting that p34 and p37 serve to stabilize 5S rRNA. In addition, an accumulation of 60S ribosomal subunits was observed, accompanied by a significant decrease in overall protein synthesis within p34/p37 RNAi cells. Thus, the loss of the trypanosomatid-specific proteins p34 and p37 correlates with a diminution in 5S rRNA levels as well as a decrease in ribosome activity and an alteration in ribosome biogenesis.  相似文献   

12.
Viruses have been invaluable tools for discovering key pathways of nucleocytoplasmic transport. Conversely, disruption of specific nuclear transport pathways, are crucial for the productive life cycle of some viruses. The major cellular mRNA export pathway, which uses TAP (NXF1)/p15(NXT) as receptor, was discovered as a result of TAP interaction with CTE-containing RNAs from Mason-Pfizer Monkey Virus. In addition, CRM1 or exportin 1, which is a transport receptor that mediates nuclear export of proteins, snRNAs, rRNAs and a small subset of mRNAs, was discovered as an interacting partner of the Rev protein of HIV1. Viruses may disrupt the nuclear transport machinery to prevent host antiviral response. VSV Matrix (M) protein inhibits mRNA export by forming a complex with the mRNA export factor Rae1 whereas poliovirus inhibits nuclear import of proteins by probably degrading Nup62 and Nup153. Hence, this review focuses on viruses as tools and as disruptors of nucleocytoplasmic trafficking.  相似文献   

13.
M Neville  M Rosbash 《The EMBO journal》1999,18(13):3746-3756
Nuclear export signal (NES)-containing proteins are recognized by the NES receptor CRM1/Crm1p (also called exportin 1/Xpo1p). In vertebrates and Schizosaccharomyces pombe, the toxin leptomycin B (LMB) inhibits CRM1-mediated export by interacting directly with CRM1 and disrupting the trimeric Ran-GTP-CRM1-NES export complex. In Saccharomyces cerevisiae, LMB is not toxic and is apparently unable to interact with Crm1p. A second difference between the systems is that LMB has no effect on mRNA export in vertebrate systems, whereas there is evidence that S.cerevisiae Crm1p plays a role in mRNA export. Here we show that a single amino acid change converts S. cerevisiae Crm1p from being LMB insensitive to fully LMB sensitive, indicating that Crm1p is the only relevant LMB target. This new strain has no phenotype, but LMB has a rapid and potent inhibitory effect on NES-mediated export. In situ hybridization assays show that LMB also causes nuclear accumulation of poly(A)+ RNA but with a significant delay compared with the effect on NES-mediated export. Biochemical assays indicate little or no LMB effect on cytoplasmic protein synthesis, indicating that the NES-Crm1p pathway is not a major mRNA export route in S.cerevisiae. We conclude that Crm1p structure and function is conserved from S.cerevisiae to man.  相似文献   

14.
TAP, the human homologue of the yeast protein Mex67p, has been proposed to serve a role in mRNA export in mammalian cells. We have examined the ability of TAP to mediate export of Rev response element (RRE)-containing human immunodeficiency virus (HIV) RNA, a well-characterized export substrate in mammalian cells. To do this, the TAP gene was fused in frame to either RevM10 or RevDelta78-79. These proteins are nonfunctional Rev mutant proteins that can bind to HIV RNA containing the RRE in vivo but are unable to mediate the export of this RNA to the cytoplasm. However, the fusion of TAP to either of these mutant proteins gave rise to chimeric proteins that were able to complement Rev function. Significantly, cotransfection with a vector expressing NXT1 (p15), an NTF2-related cellular factor that binds to TAP, led to dramatic enhancement of the ability of the chimeric proteins to mediate RNA export. Mutant-protein analysis demonstrated that the domain necessary for nuclear export mapped to the C-terminal region of TAP and required the domain that interacts with NXT1, as well as the region that has been shown to interact with nucleoporins. RevM10-TAP function was leptomycin B insensitive. In contrast, the function of this protein was inhibited by DeltaCAN, a protein consisting of part of the FG repeat domain of CAN/Nup214. These results show that TAP can complement Rev nuclear export signal function and redirect the export of intron-containing RNA to a CRM1-independent pathway. These experiments support the role of TAP as an RNA export factor in mammalian cells. In addition, they indicate that NXT1 serves as a crucial cellular cofactor in this process.  相似文献   

15.
Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast.  相似文献   

16.
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the export receptor CRM1/exportin1. However, additional protein factors interacting with leucine-rich NESs have been described. Here, we investigate human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export and Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE)-mediated nuclear export in microinjected Xenopus laevis oocytes. We show that eukaryotic initiation factor 5A (eIF-5A) is essential for Rev and Rev-mediated viral RNA export, but not for nuclear export of CTE RNA. In vitro binding studies demonstrate that eIF-5A is required for efficient interaction of Rev-NES with CRM1/exportin1 and that eIF-5A interacts with the nucleoporins CAN/nup214, nup153, nup98, and nup62. Quite unexpectedly, nuclear actin was also identified as an eIF-5A binding protein. We show that actin is associated with the nucleoplasmic filaments of nuclear pore complexes and is critically involved in export processes. Finally, actin- and energy-dependent nuclear export of HIV-1 Rev is reconstituted by using a novel in vitro egg extract system. In summary, our data provide evidence that actin plays an important functional role in nuclear export not only of retroviral RNAs but also of host proteins such as protein kinase inhibitor (PKI).  相似文献   

17.
18.
Upf3p, which is required for nonsense-mediated mRNA decay (NMD) in yeast, is primarily cytoplasmic but accumulates inside the nucleus when UPF3 is overexpressed or when upf3 mutations prevent nuclear export. Upf3p physically interacts with Srp1p (importin-alpha). Upf3p fails to be imported into the nucleus in a temperature-sensitive srp1-31 strain, indicating that nuclear import is mediated by the importin-alpha/beta heterodimer. Nuclear export of Upf3p is mediated by a leucine-rich nuclear export sequence (NES-A), but export is not dependent on the Crm1p exportin. Mutations identified in NES-A prevent nuclear export and confer an Nmd(-) phenotype. The addition of a functional NES element to an export-defective upf(-) allele restores export and partially restores an Nmd(+) phenotype. Our findings support a model in which the movement of Upf3p between the nucleus and the cytoplasm is required for a fully functional NMD pathway. We also found that overexpression of Upf2p suppresses the Nmd(-) phenotype in mutant strains carrying nes-A alleles but has no effect on the localization of Upf3p. To explain these results, we suggest that the mutations in NES-A that impair nuclear export cause additional defects in the function of Upf3p that are not rectified by restoration of export alone.  相似文献   

19.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号