首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical methods for mapping quantitative trait loci (QTLs) in full-sib forest trees, in which the number of alleles and linkage phase can vary from locus to locus, are still not well established. Previous studies assumed that the QTL segregation pattern was fixed throughout the genome in a full-sib family, despite the fact that this pattern can vary among regions of the genome. In this paper, we propose a method for selecting the appropriate model for QTL mapping based on the segregation of different types of markers and QTLs in a full-sib family. The QTL segregation patterns were classified into three types: test cross (1:1 segregation), F2 cross (1:2:1 segregation) and full cross (1:1:1:1 segregation). Akaike’s information criterion (AIC), the Bayesian information criterion (BIC) and the Laplace-empirical criterion (LEC) were used to select the most likely QTL segregation pattern. Simulations were used to evaluate the power of these criteria and the precision of parameter estimates. A Windows-based software was developed to run the selected QTL mapping method. A real example is presented to illustrate QTL mapping in forest trees based on an integrated linkage map with various segregation markers. The implications of this method for accurate QTL mapping in outbred species are discussed.  相似文献   

2.
A previous paper proposed a new method of QTL mapping called joint mapping (JM). Some problems have been found in model fitting and model testing due to the neglect of the correlations among different observations of the dependent variable in this model. The present paper reports a method of solving the problems. The coefficient of correlation between two observations of the dependent variable is derived. A generalized least square (GLS) approach is developed for model fitting and a strategy and procedure of model testing based on a chi-square test is suggested. A simulated example is given. The example shows that the JM method is quite efficient in mapping multiple linked QTLs.  相似文献   

3.
Hjort & Claeskens (2003) developed an asymptotic theoryfor model selection, model averaging and subsequent inferenceusing likelihood methods in parametric models, along with associatedconfidence statements. In this article, we consider a semiparametricversion of this problem, wherein the likelihood depends on parametersand an unknown function, and model selection/averaging is tobe applied to the parametric parts of the model. We show thatall the results of Hjort & Claeskens hold in the semiparametriccontext, if the Fisher information matrix for parametric modelsis replaced by the semiparametric information bound for semiparametricmodels, and if maximum likelihood estimators for parametricmodels are replaced by semiparametric efficient profile estimators.Our methods of proof employ Le Cam's contiguity lemmas, leadingto transparent results. The results also describe the behaviourof semiparametric model estimators when the parametric componentis misspecified, and also have implications for pointwise-consistentmodel selectors.  相似文献   

4.
Allometric scaling relationships or quarter-power rules, as a universal biological law, can be viewed as having some genetic component, and the particular genes (or quantitative trait loci, QTL) underlying these allometric relationships can be mapped using molecular markers. We develop a mathematical and statistical model for mapping allometric QTL on the basis of nonlinear power functions using Taylors approximation theory. Simulation studies indicate that the QTL position and effect can be estimated using our model, but the estimation precision can be improved from the higher- over lower-order approximation when the sample size used and gene effects are small. The application of our approach in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship between 3rd-year stem height and 3rd-year stem biomass. It is expected that our model will have broad implications for genetic, evolutionary, biomedical and breeding research.  相似文献   

5.
A mathematical approach was developed to model and optimize selection on multiple known quantitative trait loci (QTL) and polygenic estimated breeding values in order to maximize a weighted sum of responses to selection over multiple generations. The model allows for linkage between QTL with multiple alleles and arbitrary genetic effects, including dominance, epistasis, and gametic imprinting. Gametic phase disequilibrium between the QTL and between the QTL and polygenes is modeled but polygenic variance is assumed constant. Breeding programs with discrete generations, differential selection of males and females and random mating of selected parents are modeled. Polygenic EBV obtained from best linear unbiased prediction models can be accommodated. The problem was formulated as a multiple-stage optimal control problem and an iterative approach was developed for its solution. The method can be used to develop and evaluate optimal strategies for selection on multiple QTL for a wide range of situations and genetic models.  相似文献   

6.
A mathematical approach to optimize selection on multiple quantitative trait loci (QTL) and an estimate of residual polygenic effects was applied to selection on two linked or unlinked additive QTL. Strategies to maximize total or cumulative discounted response over ten generations were compared to standard QTL selection on the sum of breeding values for the QTL and an estimated breeding value for polygenes, and to phenotypic selection. Optimal selection resulted in greater response to selection than standard QTL or phenotypic selection. Tight linkage between the QTL (recombination rate 0.05) resulted in a slightly lower response for standard QTL and phenotypic selection but in a greater response for optimal selection. Optimal selection capitalized on linkage by emphasizing selection on favorable haplotypes. When the objective was to maximize total response after ten generations and QTL were unlinked, optimal selection increased QTL frequencies to fixation in a near linear manner. When starting frequencies were equal for the two QTL, equal emphasis was given to each QTL, regardless of the difference in effects of the QTL and regardless of the linkage, but the emphasis given to each of the two QTL was not additive. These results demonstrate the ability of optimal selection to capitalize on information on the complex genetic basis of quantitative traits that is forthcoming.  相似文献   

7.
In this paper, the theory of joint mapping of quantitative trait loci is extended to F2 populations. Two independent regression equations, related to the additive and dominance effects respectively, are derived. Therefore, there are three alternative strategies for mapping QTLs, called additive-based mapping (ABM), dominance-based mapping (DBM) and additive-dominance-based mapping (ADBM). Simulation results have shown that ADBM is the most appropriate in most situations.  相似文献   

8.
Selection on known loci affecting quantitative traits (DSQ) was compared to phenotypic selection index for a single and a two-trait selection objective. Two situations were simulated; a single known quantitative locus, and ten identified loci accounting for all the additive genetic variance. Selection efficiency of DSQ relative to traitbased selection was higher for two-trait selection, than was selection on a single trait with the same heritability. The advantage of DSQ was greater when the traits were negatively correlated. Relative selection efficiency (RSE) for a single locus responsible for 0.1 of the genetic variance was 1.11 with heritabilities of 0.45 and 0.2 and zero genetic and phenotypic correlations between the traits. RSE of DSQ for ten known loci was 1.5 to 1.8 in the first 3 generations of selection, but declined in each subsequent generation. With DSQ most loci reached fixation after 7 generations. Response to trait-based selection continued through generation 15 and approached the response obtained with DSQ after 10 generations. The cumulative genetic response after 10 generations of DSQ was only 93% to 97% of the economically optimum genotype because the less favorable allele reached fixation for some loci, generally those with effects in opposite directions on the two traits.  相似文献   

9.
Summary Prior information on gene effects at individual quantitative trait loci (QTL) and on recombination rates between marker loci and QTL is derived. The prior distribution of QTL gene effects is assumed to be exponential with major effects less likely than minor ones. The prior probability of linkage between a marker and another single locus is a function of the number and length of chromosomes, and of the map function relating recombination rate to genetic distance among loci. The prior probability of linkage between a marker locus and a quantitative trait depends additionally on the number of detectable QTL, which may be determined from total additive genetic variance and minimum detectable QTL effect. The use of this prior information should improve linkage tests and estimates of QTL effects.  相似文献   

10.
Wu R  Ma CX  Lin M  Wang Z  Casella G 《Biometrics》2004,60(3):729-738
The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.  相似文献   

11.
This paper presents results from a mapping experiment to detect quantitative trait loci (QTL) for resistance to Haemonchus contortus infestation in merino sheep. The primary trait analysed was faecal worm egg count in response to artificial challenge at 6 months of age. In the first stage of the experiment, whole genome linkage analysis was used for broad-scale mapping. The animal resource used was a designed flock comprising 571 individuals from four half-sib families. The average marker spacing was about 20 cM. For the primary trait, 11 QTL (as chromosomal/family combinations) were significant at the 5% chromosome-wide level, with allelic substitution effects of between 0.19 and 0.38 phenotypic standard deviation units. In general, these QTL did not have a significant effect on faecal worm egg count recorded at 13 months of age. In the second stage of the experiment, three promising regions (located on chromosomes 1, 3 and 4) were fine-mapped. This involved typing more closely spaced markers on individuals from the designed flock as well as an additional 495 individuals selected from a related population with a deeper pedigree. Analysis was performed using a linkage disequilibrium–linkage approach, under additive, dominant and multiple QTL models. Of these, the multiple QTL model resulted in the most refined QTL positions, with resolutions of <10 cM achieved for two regions. Because of the moderate size of effect of the QTL, and the apparent age and/or immune status specificity of the QTL, it is suggested that a panel of QTL will be required for significant genetic gains to be achieved within industry via marker-assisted selection.  相似文献   

12.
Summary As compared to classical, fixed sample size techniques, simulation studies showed that a proposed sequential sampling procedure can provide a substantial decrease (up to 50%, in some cases) in the mean sample size required for the detection of linkage between marker loci and quantitative trait loci. Sequential sampling with truncation set at the required sample size for the non-sequential test, produced a modest further decrease in mean sample size, accompanied by a modest increase in error probabilities. Sequential sampling with observations taken in groups produced a noticeable increase in mean sample size, with a considerable decrease in error probabilities, as compared to straightforward sequential sampling. It is concluded that sequential sampling has a particularly useful application to experiments aimed at investigating the genetics of differences between lines or strains that differ in some single outstanding trait.  相似文献   

13.
In the analysis of data generated by change-point processes, one critical challenge is to determine the number of change-points. The classic Bayes information criterion (BIC) statistic does not work well here because of irregularities in the likelihood function. By asymptotic approximation of the Bayes factor, we derive a modified BIC for the model of Brownian motion with changing drift. The modified BIC is similar to the classic BIC in the sense that the first term consists of the log likelihood, but it differs in the terms that penalize for model dimension. As an example of application, this new statistic is used to analyze array-based comparative genomic hybridization (array-CGH) data. Array-CGH measures the number of chromosome copies at each genome location of a cell sample, and is useful for finding the regions of genome deletion and amplification in tumor cells. The modified BIC performs well compared to existing methods in accurately choosing the number of regions of changed copy number. Unlike existing methods, it does not rely on tuning parameters or intensive computing. Thus it is impartial and easier to understand and to use.  相似文献   

14.
Summary Methods are presented for determining linkage between a marker locus and a nearby locus affecting a quantitative trait (quantitative trait locus=QTL), based on changes in the marker allele frequencies in selection lines derived from the F-2 of a cross between inbred lines, or in the high and low phenotypic classes of an F-2 or BC population. The power of such trait-based (TB) analyses was evaluated and compared with that of methods for determining linkage based on the mean quantitative trait value of marker genotypes in F-2 or BC populations [marker-based (MB) analyses]. TB analyses can be utilized for marker-QTL linkage determination in situations where the MB analysis is not applicable, including analysis of polygenic resistance traits where only a part of the population survives exposure to the Stressor and analysis of marker-allele frequency changes in selection lines. TB analyses may be a useful alternative to MB analyses when interest is centered on a single quantitative trait only and costs of scoring for markers are high compared with costs of raising and obtaining quantitative trait information on F-2 or BC individuals. In this case, a TB analysis will enable equivalent power to be obtained with fewer individuals scored for the marker, but more individuals scored for the quantitative trait. MB analyses remain the method of choice when more than one quantitative trait is to be analyzed in a given population.Contribution from the ARO, Bet Dagan, Israel. No. 1698-E, 1986 series  相似文献   

15.
Cui Y  Lu Q  Cheverud JM  Littell RC  Wu R 《Genomics》2006,87(4):543-551
The role of imprinting in shaping development has been ubiquitously observed in plants, animals, and humans. However, a statistical method that can detect and estimate the effects of imprinted quantitative trait loci (iQTL) over the genome has not been extensively developed. In this article, we propose a maximum likelihood approach for testing and estimating the imprinted effects of iQTL that contribute to variation in a quantitative trait. This approach, implemented with the EM algorithm, allows for a genome-wide scan for the existence of iQTL. This approach was used to reanalyze published data in an F(2) family derived from the LG/S and SM/S mouse strains. Several iQTL that regulate the growth of body weight by expressing paternally inherited alleles were identified. Our approach provides a standard procedure for testing the statistical significance of iQTL involved in the genetic control of complex traits.  相似文献   

16.
Accuracy of mapping quantitative trait loci in autogamous species   总被引:21,自引:0,他引:21  
Summary The development of linkage maps with large numbers of molecular markers has stimulated the search for methods to map genes involved in quantitative traits (QTLs). A promising method, proposed by Lander and Botstein (1989), employs pairs of neighbouring markers to obtain maximum linkage information about the presence of a QTL within the enclosed chromosomal segment. In this paper the accuracy of this method was investigated by computer simulation. The results show that there is a reasonable probability of detecting QTLs that explain at least 5% of the total variance. For this purpose a minimum population of 200 backcross or F2 individuals is necessary. Both the number of individuals and the relative size of the genotypic effect of the QTL are important factors determining the mapping precision. On the average, a QTL with 5% or 10% explained variance is mapped on an interval of 40 or 20 centiMorgans, respectively. Of course, QTLs with a larger genotypic effect will be located more precisely. It must be noted, however, that the interval length is rather variable.  相似文献   

17.
Mapping quantitative trait loci using the MCMC procedure in SAS   总被引:1,自引:0,他引:1  
S Xu  Z Hu 《Heredity》2011,106(2):357-369
The MCMC procedure in SAS (called PROC MCMC) is particularly designed for Bayesian analysis using the Markov chain Monte Carlo (MCMC) algorithm. The program is sufficiently general to handle very complicated statistical models and arbitrary prior distributions. This study introduces the SAS/MCMC procedure and demonstrates the application of the program to quantitative trait locus (QTL) mapping. A real life QTL mapping experiment in wheat female fertility trait was used as an example for the demonstration. The fertility trait phenotypes were described under three different models: (1) the Poisson model, (2) the Bernoulli model and (3) the zero-truncated Poisson model. One QTL was identified on the second chromosome. This QTL appears to control the switch of seed-producing ability of female plants but does not affect the number of seeds produced once the switch is turned on.  相似文献   

18.
We constructed recombinant inbred lines of a cross between naturally occurring ecotypes of Avena barbata (Pott ex Link), Poaceae, associated with contrasting moisture environments. These lines were assessed for fitness in common garden reciprocal transplant experiments in two contrasting field sites in each of two years, as well as a novel, benign greenhouse environment. An AFLP (amplified fragment length polymorphism) linkage map of 129 markers spanned 644 cM in 19 linkage groups, which is smaller, with more linkage groups, than expected. Therefore parts of the A. barbata genome remain unmapped, possibly because they lack variation between the ecotypes. Nevertheless, we identified QTL (quantitative trait loci) under selection in both native environments and in the greenhouse. Across years at the same site, the same loci remain under selection, for the same alleles. Across sites, an overlapping set of loci are under selection with either (i) the same alleles favoured at both sites or (ii) loci under selection at one site and neutral at the other. QTL under selection in the greenhouse were generally unlinked to those under selection in the field because selection acted on a different trait. We found little evidence that selection favours alternate alleles in alternate environments, which would be necessary if genotype by environment interaction were to maintain genetic variation in A. barbata. Additive effect QTL were best able to explain the genetic variation among recombinant inbred lines for the greenhouse environment where heritability was highest, and past selection had not eliminated variation.  相似文献   

19.
A segregating population of F1-derived doubled haploid (DH) lines of Brassica oleracea was used to detect and locate QTLs controlling 27 morphological and developmental traits, including leaf, flowering, axillary bud and stem characters. The population resulted from a cross between two very different B. oleracea crop types, an annual cauliflower and a biennial Brussels sprout. A principal component analysis (PCA), based on line means, allowed all the traits to be grouped into distinct categories according to the first five Principal Components. These were: leaf traits (PC1), flowering traits (PC2), axillary bud traits (PC3 and 5) and stem traits (PC4). Between zero and four putative QTL were located per trait, which individually explained between 6% and 43% of the additive genetic variation, using the multiple-marker regression approach to QTL mapping. For lamina width, bare petiole length and stem length two QTL with opposite effects were detected on the same linkage groups. Intra- and inter-specific comparative mapping using RFLP markers identified a QTL on linkage group O8 accounting for variation in vernalisation, which is probably synonymous with a QTL detected on linkage group N19 of Brassica napus. In addition, a QTL for petiole length detected on O3 of this study appeared to be homologous to a QTL detected on another B. oleracea genetic map (Camargo et al. 1995). Received: 28 March 2001 / Accepted: 25 June 2001  相似文献   

20.
The interval mapping method is widely used for the genetic mapping of quantitative trait loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with this method. Separation of QTLs is troublesome, because single-QTL is models are fitted. Further, genotype-by-environment interaction, which is of great importance in many quantitative traits, can only be approached by separately analyzing the data collected in multiple environments. Here, we demonstrate for the first time a novel analytic approach (MQM mapping) that accommodates both the mapping of multiple QTLs and genotype-by-environment interaction. MQM mapping is compared to interval mapping in the mapping of QTLs for flowering time in Arabidopsis thaliana under various photoperiod and vernalization conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号