首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic preconditioning (IP) protects the heart against subsequent prolonged ischemia. Whether the beta-adrenoceptor/adenylate cyclase pathway contributes to this cardioprotection is not yet fully known. Using enzyme catalytic cytochemistry we studied the adenylate cyclase activity and its distribution in the preconditioned rat heart. Adenylate cyclase activity was examined in Langendorff-perfused rat hearts subjected to the following conditions: control perfusion; 30 min regional ischemia; 5 min occlusion and 10 min reperfusion (IP); IP followed by ischemia. Ischemia-induced arrhythmias and the effect of ischemic preconditioning on the incidence of arrhythmias were analyzed. At the end of experiment the heart was shortly prefixed with glutaraldehyde. Tissue samples from the left ventricle were incubated in a medium containing the specific substrate AMP-PNP for adenylate cyclase and then routinely processed for electron microscopy. Adenylate cyclase activity was cytochemically demonstrated in the sarcolemma and the junctional sarcoplasmic reticulum (JSR) in control hearts, while it was absent after test ischemia. The highest activity of the precipitate was observed after ischemic preconditioning. In the preconditioned hearts followed by test ischemia, adenylate cyclase activity in the precipitate was preserved in sarcolemma and even more in JSR. Protective effect of ischemic preconditioning was manifested by the suppression of severe arrhythmias. These results indicate the involvement of the adenylate cyclase system in mechanisms underlying ischemic preconditioning.  相似文献   

2.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

3.
In a model system of cultured rat cardiac cells, the expression of the heat shock protein hsp68 was studied after simulating ischemia. We observed both an increase in hsp68 mRNA levels and hsp68 synthesis, while under normal conditions hsp68 and its mRNA could not be detected. Using an antibody against hsp70 and hsp68, immunofluorescence studies showed that during 'ischemia', when hsp68 is not yet synthesized, hsp70 migrated into the nucleus. These results demonstrate that the expression of hsp68 can be used as a marker for the occurrence of ischemia. Furthermore, these findings support the fact that this in vitro system is a suitable model for the study on myocardial infarction.  相似文献   

4.
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.  相似文献   

5.
Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities.  相似文献   

6.
A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.  相似文献   

7.
Several lines of evidence indicating a close relationship among ischemia, concentration of high-energy metabolites and onset of the “oxygen paradox” in reperfused tissues have been published. In this framework, we have recently studied the effects of exogenous fructose-1,6-bisphosphate on energy metabolism and on oxygen free radical damages of isolated rat heart subjected to anoxia and reoxygenation. In comparison with control groups, hearts perfused in the presence of 5mM fructose-1,6-bisphosphate throughout the different perfusion conditions showed higher concentrations of energy metabolites at the end of anoxia, most of which were normalized after reperfusion. Furthermore, in comparison with control hearts, a reduction of tissue malondialdehyde and of lactate dehydrogenase release in the perfusate was observed in fructose-1,6-bisphosphate-perfused hearts. In this article we review most of the available data concerning the ability of fructose-1,6-bisphosphate to protect from ischemia and reperfusion damage outlining those recent findings which contributed both to clarify the pharmacological profile of the drug and to give an insight in its probable mechanism of action.  相似文献   

8.
大鼠心肌整体缺血及离体再灌注致生物膜的损伤作用   总被引:1,自引:0,他引:1  
目的和方法:利用整体大鼠异丙肾上腺素损伤(ISO)和离体大鼠全心停灌/再灌(I/R)两种模型,观察了心肌缺血和缺血/再灌注对心肌生物膜-线粒体膜及肌纤维膜损伤的影响。结果:ISO(5mg/kg,皮下注射)和I/R(20min/20min)可导致大鼠心脏生物膜产生严重损伤,表现为心肌线粒体脂质过氧化产物明显增加,线粒体磷脂酶A2(PLA2)激活,从而导致线粒体膜磷脂(PL)含量减少,磷脂分解产物游离脂肪酸(FFA)增加,膜脂流动性(LFU)降低,线粒体Ca^2 -ATPase及肌纤维膜Na^ ,K^ -ATPase活性降低,线粒体呼吸功能降低、呼吸链氧化磷酸化解偶联,高能磷酸化合物生成减少。结论:整体ISO和离体I/R可导致大鼠心肌线粒体、肌纤维膜结构和功能损伤。  相似文献   

9.
Using catalytic cytochemistry the AC activity was studied during ischemic preconditioning (IP) (5 min occlusion of LAD and 10 min reperfusion) followed by 30 min regional ischemia in isolated Langendorff-perfused rat heart. In controls the specific precipitate of AC reaction was found on the sarcolemma (SL) and the junctional sarcoplasmic reticulum (JSR) of cardiomyocytes. After prolonged ischemia the reaction product was absent, whereas IP followed by prolonged ischemia protected the AC activity on SL and JSR. IP-induced enhancement of AC activity in this model was accompanied by significant reduction of ischemia/reperfusion fibrillation. The results suggest involvement of AC system in mechanisms of IP.  相似文献   

10.
In the present study, we investigated changes in glutamate decarboxylase 65 (GAD65) and GAD67 immunoreactivity and protein levels in the main olfactory bulb (MOB) after 5 min of transient forebrain ischemia in gerbils. GAD65 immunoreactivity in the sham-operated group was shown in neurons and neuropil except for the somata of granule cells. GAD65 immunoreactivity was increased in neurons in the external plexiform layer 60 days after ischemia, and in mitral cells 30 and 60 days after ischemia. GAD67 immunoreactivity in the sham-operated group was shown in periglomerular cells, neuron in the external plexiform layer and granule cells with neuropil. GAD67 immunoreactivity in periglomerular cells was increased 10, 45 and 60 days after ischemia. GAD67 immunoreactivity in neurons in the external plexiform layer was increased 10 and 15 days after ischemia. Mitral cells showed strong GAD67 immunoreactivity 10 days after ischemia. However, GAD67 immunoreactivity in the granule cells was not changed with time after ischemia. In Western blot analysis for GAD65 and GAD67 protein levels in the ischemic gerbil MOB, GAD65 level was not changed after ischemia; GAD67 level was increased 10 days after ischemia. These results suggest that transient ischemia causes changes in GAD65 and GAD67 immunoreactivity in the gerbil MOB, and this change may induce a malfunction in olfaction after an ischemic insult. Ki-Yeon Yoo and In Koo Hwang equally contributed to this article.  相似文献   

11.
Calcineurin (CaN) has been reported as a critical mediator for cardiac hypertrophy and cardiac myocyte apoptosis. In the present study, we investigated the activity and expression of CaN and the effect of calpain in rat heart after ischemia and reperfusion. Rat ischemic heart showed significant increase in CaN activity. Western blot analysis of normal rat heart extract with a polyclonal antibody raised against bovine CaN indicated a prominent immunoreactive band of 60 kDa (CaN A). In ischemic-reperfused hearts, the expression of CaN A was significantly low and immunoreactivity was observed in proteolytic bands of 46 kDa. This may be due to the proteolytic degradation of CaN A in ischemic tissues by m-calpain. We also noticed in vitro proteolysis of bovine cardiac CaN A by m-calpain. Immunohistochemical studies showed strong staining of immunoreactivity in rat hearts that had gone under 30 min ischemia followed by 30 min reperfusion similar to that found in human ischemic heart. Ischemia is associated with multiple alterations in the extracellular and intracellular signaling of cardiomyocytes and may act as an inducer of apoptosis. The increase in CaN activity and strong immunostaining observed in ischemic/perfused rat heart may be due to the calpain-mediated proteolysis of this phosphatase.  相似文献   

12.
During Langendorff perfusion of rat heart with aminocarnitine, long-chain acylcarnitine (LCAC) accumulates in heart cells, from which it is excreted by the heart. The heart function remains intact during this process. The accumulation of LCAC can be inhibited by the simultaneous addition of an inhibitor of the outer membrane carnitine palmitoyl-coenzyme A transferase (CPT-1), indicating that aminocarnitine is a specific inhibitor of the inner membrane isoenzyme (CPT-2). LCAC accumulation is associated with glycogen depletion. After 60 min perfusion with aminocarnitine, electron microscopy shows large multilamellar lipid vesicles, especially in cardiomyocytes, which are depleted in glycogen granula. Multilamellar lipid vesicles are also found in the blood vessels. Extraction of the perfusate shows the presence of LCAC, fatty acid and phosphatidylethanolamine. Morphological analysis with freeze fracturing and thin sectioning furthermore reveals that the sarcolemma is not deteriorated during the export of LCAC to the coronary vessels. Since cardiac structures and functions are intact, LCAC alone is not the clue for ischemic damage. Therefore the present work supports the hypothesis that acidosis rather than LCAC is of primary importance to ischemic damage.  相似文献   

13.
Certain vertebrates, such as freshwater turtles of the genus Chrysemys and Trachemys and crucian carp (Carassius carassius), have anoxia-tolerant hearts that continue to function throughout prolonged periods of anoxia (up to many months) due to successful balancing of cellular ATP supply and demand. In the present review, we summarize the current and limited understanding of the cellular mechanisms underlying this cardiac anoxia tolerance. What emerges is that cold temperature substantially modifies cardiac electrophysiology to precondition the heart for winter anoxia. Intrinsic heart rate is slowed and density of sarcolemmal ion currents substantially modified to alter cardiac action potential (AP) characteristics. These changes depress cardiac activity and reduce the energetic costs associated with ion pumping. In contrast, anoxia per se results in limited changes to cardiac AP shape or ion current densities in turtle and crucian carp, suggesting that anoxic modifications of cardiac electrophysiology to reduce ATP demand are not extensive. Additionally, as knowledge of cellular physiology in non-mammalian vertebrates is still in its infancy, we briefly discuss the cellular defense mechanisms towards the acidosis that accompanies anoxia as well as mammalian cardiac models of hypoxia/ischemia tolerance. By examining if fundamental cellular mechanisms have been conserved during the evolution of anoxia tolerance we hope to have provided a framework for the design of future experiments investigating cardiac cellular mechanisms of anoxia survival.  相似文献   

14.
In this study we have attempted to correlate reversible and irreversible cell damage induced by in vivo or in vitro ischemia with characteristics of the plasma membranes of liver parenchymal cells, as detected biochemically and ultrastructurally. The effects of in vivo or in vitro ischemia appeared to be similar. It was virtually impossible to isolate a substantial membrane fraction from ischemic livers, probably because of changes in the physical properties of the membranes by ischemia. The isolated membranes of ischemic liver cells show ultrastructural changes including the occurrence of many vesicular profiles and alterations in junctional complexes expressed by extended and smudged electron densities along the lateral surfaces. The microvilli of the bile canaliculi disappeared after only 15 min ischemia and cytoplasmic densities associated with junctional complexes also appeared extended and smudged. These changes correspond with the alterations observed in ischemic isolated membranes. After 30 min in vivo ischemia the activity of 5'-mononucleotidase used as a marker enzyme for plasma membranes, decreased by 75%, whereas the activity of thymidine 5'-phosphodiesterase was reduced only slightly. The changes in these enzyme activities were more prominent after in vitro ischemia than after in vivo. The morphological and biochemical changes observed in rat hepatocyte plasma membrane during the early stage of injury have no value in predicting the occurrence of necrosis in a later phase of the process since profound changes occur in plasma membrane properties after even short periods of ischemia (i.e. during the reversible stage).  相似文献   

15.
The aim of the study was to investigate the effect of in vitro anoxia/reoxygenation on the oxidative phosphorylation of isolated lung mitochondria. Mitochondria were isolated after harvesting from fresh pig lungs flushed with Euro-Collins solution. Mitochondrial respiratory parameters were determined in isolated mitochondria before anoxia (control), after 5-45 min anoxia followed by 5 min reoxygenation, and after 25 or 40 min of in vitro incubation in order to follow the in vitro aging of mitochondria during respiratory assays. Respiratory parameters measured after anoxia/reoxygenation did not show any oxidative phosphorylation dysfunction, indicating a high resistance of pulmonary mitochondria to in vitro anoxia/reoxygenation (up to 45 min anoxia). These results indicate that mitochondria are not directly responsible of their oxidative phosphorylation damage observed after in vivo ischemia (K. Willet et al., Transplantation 69 (2000) 582) but are a target of others cellular injuries leading to mitochondrial dysfunction in vivo.  相似文献   

16.
Using ventricular cardiomyocytes of the common frog, Rana temporaria, we investigated the metabolic strategies employed by the heart to tolerate 4 mo of hypoxic submergence (overwintering) as well as acute bouts of anoxia. In contrast to what is observed for the whole animal, there was no change in oxygen consumption in cardiomyocytes isolated from normoxic frogs compared with those isolated from 4-mo hypoxic animals. Furthermore, cells from both normoxic and hypoxic frogs were able to completely recover oxygen consumption following 30 min of acute anoxia. From estimates of ATP turnover, it appears that frog cardiomyocytes are capable of a profound, completely reversible metabolic depression, such that ATP turnover is reduced by >90% of control levels during anoxia but completely recovers with reoxygenation. Moreover, this phenomenon is also observed in frogs that have been subjected to 4 mo of extended hypoxia. We found a significant increase in the stress protein, hsp70, after 1 mo of hypoxic submergence, which may contribute to the heart's remarkable hypoxia and anoxia tolerance and may act to defend metabolism during the overwintering period.  相似文献   

17.
Reactive oxygen species (ROS) generated during ischemia-reperfusion (I/R) enhance myocardial injury, but brief periods of myocardial ischemia followed by reperfusion [ischemic preconditioning (IP)] induce cardioprotection. Ischemia is reported to stimulate glucose uptake through the translocation of GLUT-4 from the intracellular vesicles to the sarcolemma. In the present study we demonstrated involvement of ROS in IP-mediated GLUT-4 translocation along with increased expression of caveolin (Cav)-3, phospho (p)-endothelial nitric oxide synthase (eNOS), p-Akt, and decreased expression of Cav-1. The rats were divided into the following groups: 1) control sham, 2) N-acetyl-L-cysteine (NAC, free radical scavenger) sham (NS), 3) I/R, 4) IP + I/R (IP), and 5) NAC + IP (IPN). IP was performed by four cycles of 4 min of ischemia and 4 min of reperfusion followed by 30 min of ischemia and 3, 24, 48 h of reperfusion, depending on the protocol. Increased mRNA expression of GLUT-4 and Cav-3 was observed after 3 h of reperfusion in the IP group compared with other groups. IP increased expression of GLUT-4, Cav-3, and p-AKT and p-eNOS compared with I/R. Coimmunoprecipitation demonstrated decreased association of Cav-1/eNOS in the IP group compared with the I/R group. Significant GLUT-4 and Cav-3 association was also observed in the IP group. This association was disrupted when NAC was used in conjunction with IP. It clearly documents a significant role of ROS signaling in Akt/eNOS/Cav-3-mediated GLUT-4 translocation and association in IP myocardium. In conclusion, we demonstrated a novel redox mechanism in IP-induced eNOS and GLUT-4 translocation and the role of caveolar paradox in making the heart euglycemic during the process of ischemia, leading to myocardial protection in a clinically relevant rat ischemic model.  相似文献   

18.
It is now appreciated that mitochondrial creatine kinase (CKm) may play an important role in heart high-energy phosphate metabolism and that this isozyme is solubilized in vitro by dilute solutions of Pi. Since an increase in cellular Pi is known to occur with even brief periods of myocardial ischemia, we investigated the relationship between CKm activity and myocardial performance in rabbit hearts subjected to total global ischemia. CKm activity is expressed as a ratio to mitochondrial malate dehydrogenase (MDHm), a stable marker enzyme. A significant decline in this ratio was observed after only 10 min of ischemia, a time prior to changes in total homogenate creatine kinase activity. After 60 min of ischemia, the CKm/MDHm ratio was depressed by more than 70%. Since there was no restoration of activity following 30 min of reperfusion, we correlated changes in enzyme activity to contractile dysfunction following variable periods of total ischemia. The data showed a close correlation between the decline in the CKm/MDHm ratio and the reduction in performance, measured as left ventricular developed pressure. No correlation was observed between State 3 respiratory rates and performance. Using KCl arrest at 27 degrees C or hyperthermic ischemia at 40 degrees C, the CKm/MDHm ratio consistently correlated to the degree of postischemic functional depression, independent of the duration of ischemia. Isoenzyme electrophoresis failed to detect soluble CKm activity in the postischemic supernatant. Therefore, CKm activity appears to be altered rapidly and irreversibly by ischemia. The implications of these observations on the integration of myocardial high-energy phosphate metabolism are discussed.  相似文献   

19.
Using bilateral carotid artery occlusion in adult gerbils we examined the effects of ischemia and ischemia/reperfusion on cerebral phospholipid content and Na+,K+-ATPase (EC 3.6.1.3) activity. In contrast to the large changes in phospholipid content and membrane-bound enzyme activity that have been observed in liver and heart tissues, we observed relatively small changes in the cerebral content of total phospholipid, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE) following ischemic intervals of up to 240 min. Following 15 min of ischemia the cerebral content of sphingomyelin (SM) was decreased to less than 50% of control values but returned to near-normal levels with longer ischemic periods. Significant decreases in the cerebral content of phosphatidylinositol (PI) and phosphatidic acid (PA) were observed following shorter intervals of ischemia (15-45 min). Na+,K+-ATPase activity of cerebral homogenates prepared from the brains of gerbils subjected to 30-240 min of ischemia was decreased but significantly different from control activity only after 30 min of ischemia (-29%, p less than or equal to 0.05). With the exception of PS, reperfusion for 60 min following 60 min of ischemia resulted in marked increases in cerebral phospholipid content with PC, SM, PI, and PA levels exceeding and PE levels equal to preischemic values. Longer periods of reperfusion (180 min) resulted in decreases in cerebral phospholipid content toward (PC, SM, PI, and PA) or below (PE) preischemic levels. In contrast, the cerebral content of PS significantly decreased during reperfusion (-51% at 60 min, p less than or equal to 0.05) and remained below preischemic values even after 180 min of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have recently reported that in chronic myocardial ischemia, adult mammalian cardiomyocytes express P-glycoprotein (P-gp). We now investigate if P-gp is also expressed in acute regional ischemia followed by reperfusion. Adult conscious sheep underwent 12-min occlusion of the mid-left anterior descending artery (inflatable cuff). Successful ischemia-reperfusion was confirmed by monitoring percent systolic left ventricular anterior wall thickening (sonomicrometry) during the whole ischemic period and every 10 min over 2 hr following cuff deflation. At 3, 24, and 48 hr after reperfusion, P-gp expression was investigated by immunohistochemistry and Western blot and MDR-1 mRNA by RT-PCR. Cardiomyocytes in the occluded artery territory (but not those in remote areas) consistently expressed P-gp at their sarcolemma. Whereas at 3 and 24 hr P-gp was mainly observed in the T tubules, at 48 hr it predominated in intercalated discs and gap junctions. RT-PCR and Western blot revealed higher expression in ischemic than in control myocardium. We conclude that in adult sheep with acute myocardial ischemia, the MDR-1 gene-encoded P-gp is expressed at the sarcolemma of the cardiomyocytes from 3 hr up to at least 48 hr after reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号