首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

2.
We have characterized a mutation that produces mild, dominantly inherited osteogenesis imperfecta. Half of the alpha 1 (I) chains of type I collagen synthesized by cells from an affected individual contain a cysteine residue in the 196-residue carboxyl-terminal cyanogen bromide peptide of the triple-helical domain (Steinmann, B., Nicholls, A., and Pope, F. M. (1986) J. Biol. Chem. 261, 8958-8964). Unexpectedly, sequence determined from a proteolytic fragment of the alpha 1 (I) chain derived from procollagen molecules synthesized in the presence of both [3H]proline and [35S]cysteine indicated that the cysteine is located at the third residue carboxyl-terminal to the triple-helical domain, normally a glycine. The nucleotide sequence of a fragment amplified from genomic DNA confirmed the location of the cysteine residue and showed that the mutation was a single nucleotide change in one COL1A1 allele. This represents a new class of mutations, point mutations outside the triple-helical domain of the chains of type I collagen, that produce the osteogenesis imperfecta phenotype.  相似文献   

3.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

4.
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to alpha1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the alpha1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the alpha1(I) chain and results in reduced thermal stability by 3 degrees C and intracellular retention of abnormal molecules.  相似文献   

5.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

6.
Two substitutions for glycine in the triple-helical domain were found in type I procollagen synthesized by skin fibroblasts from two probands with lethal osteogenesis imperfecta. One was a substitution of valine for glycine alpha 1-637, and the other was a substitution of arginine for glycine alpha 2-694. The effects of the mutations on the zipper-like folding of the collagen triple helix were similar, since there was post-translational overmodification of the collagenase A fragments (amino acids 1-775) but not of more COOH-terminal fragments of the protein. The mutations differed markedly, however, on their effects on thermal unfolding of the triple helix. The collagenase A fragment from the collagen containing the arginine alpha 2-694 substitution was cleaved at about amino acid 700 when incubated with trypsin at 30-35 degrees C. Therefore, there was micro-unfolding of the triple helix at a site close to the glycine substitution. Surprisingly, however, the collagenase A fragment with the valine alpha 1-637 substitution was also cleaved at about amino acid 700 under the same conditions. The results, therefore, demonstrated that although most glycine substitutions delay folding of the triple helix in regions that are NH2-terminal to the site of the substitution, the effects on unfolding can be transmitted to regions that are COOH-terminal to the site of the glycine substitution.  相似文献   

7.
Summary To determine if some individuals with deforming varieties of osteogenesis imperfecta (OI) carry point mutations in the COL1A2 gene of type-I collagen, we examined collagens synthesized by cell strains from affected individuals for the presence of cysteine in the triple helical domain of the 2(I) chain, a domain from which it is normally excluded. We identified 4 individuals out of 60 whose cells synthesized a population of 2(I) chains with a cysteine residue in the triple helix. The clinical differences among the affected individuals and the heterogeneity in the locations of the cysteine residues suggest that the position of the substitution within the chain is important in determining the clinical phenotype. These data confirm that individuals with nonlethal OI may commonly harbor defects in the COL1A2 gene, and suggest that many of the defects are substitutions for glycine residues in the 2(I) triple helical domain.  相似文献   

8.
The sequence of canine COL1A1 cDNA was determined from four overlapping COL1A1 RT-PCR products generated from canine fibroblast RNA. In the translated region, nucleotide identity between canine and human COL1A1 cDNA was 93.2%, although the canine sequence lacked nucleotides 204 to 215 in the region coding for the N-propeptide. Amino acid identity was 97.7%. Total RNA and type I collagen were collected from cultured skin fibroblasts of a 12-week-old male golden retriever with pathologic fractures suggestive of osteogenesis imperfecta (OI) and dentinogenesis imperfecta. Sequential, overlapping approximately 1,000-bp fragments of COL1A1 and COL1A2 cDNA were each amplified by RT-PCR using primers containing 5' T7 polymerase sites. These PCR products were transcribed with T7 RNA polymerase, hybridized into RNA duplexes, and cleaved at mismatch sites with RNase. The proband had an unique cleavage pattern for the fragment of COL1A1 mRNA spanning nucleotides 709 to 1,531. Sequence analysis identified a G to C point mutation for nucleotide 1,276, predicting a codon change from glycine (GGA) to alanine (GCA) for amino acid 208. This change disrupts the normal Gly-X-Y pattern of the collagen triple helix. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. Type I collagen was labeled with 3H-proline, salt precipitated, and analyzed by SDS-PAGE. Pepsin digested alpha chains were over-hydroxylated, and procollagen processing was delayed. Thus, canine and human OI appear homologous in terms of clinical presentation, etiology, and pathogenesis.  相似文献   

9.
Cultured fibroblasts from a patient affected with a moderate form of osteogenesis imperfecta were defective for the synthesis of type I collagen molecules; about half of the alpha 1(I) chains contained a cysteine residue in the triple helical domain and a disulfide link formed when two mutant alpha 1(I) chains were incorporated into a type I collagen heterotrimer. The proband's parents were clinically and biochemically normal. The cysteine was localized within peptide alpha 1(I)CB8 between residues 170 and 200 of the triple helical domain using a chemical procedure with 2-nitro-5-thiocyanobenzoic acid (Tenni, R., Rossi, A., Valli, M., Mottes, M., Pignatti, P. F., and Cetta, G. (1990) Matrix 10, 20-26). Type I procollagen heterotrimers containing either one or two mutant chains showed (i) a slight abnormality in secretion from cells; (ii) a low degree of post-translational overmodifications; (iii) the same, but lower than normal, thermal stability. Total RNA was isolated from the proband's dermal fibroblast cultures, and cDNAs for pro-alpha 1(I) were prepared d using total RNA. A portion of cDNA, coding for the region encompassing residues 119-193 of alpha 1(I) triple helical domain, was amplified by polymerase chain reaction. A single base pair mismatch was identified by chemical cleavage of DNA.DNA heteroduplexes, indicating a possible substitution of a guanine in the triplet coding for glycine 178 or 181. The same unique mismatch was detected by chemical cleavage in about one-half of the molecules in heteroduplexes formed between patient's pro-alpha 1(I) mRNAs and a normal cDNA probe. The amplified products were cloned and sequenced, confirming the heterozygous nature of the patient and demonstrating the presence and the location of a missense mutation; a single T for G substitution was found in the first base of the triplet coding for residue 178 of alpha 1(I) triple helical domain, leading to a cysteine for glycine substitution. Allele-specific oligonucleotide hybridization to amplified DNA confirmed a de novo point mutation in the proband's genome. The findings in this patient are in accord with the phenotypic gradient model, which correlates the localization of the structural defect with the clinical outcome of osteogenesis imperfecta. The mutant protein has some properties that differ from the caused by the cysteine for glycine 175 substitution, suggesting a direct influence of the neighboring amino acids on the effects of the mutation.  相似文献   

10.
Skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta synthesized both apparently normal type I procollagen and a type I procollagen that had slow electrophoretic mobility because of posttranslational overmodifications. The thermal unfolding of the collagen molecules as assayed by protease digestion was about 2 degrees C lower than normal. It is surprising, however, that collagenase A and B fragments showed an essentially normal melting profile. Assay of cDNA heteroduplexes with a new technique involving carbodiimide modification indicated a mutation at about the codon for amino acid 550 of the alpha 1(I) chain. Subsequent amplification of the cDNA by the PCR and nucleotide sequencing revealed a single-base mutation that substituted an aspartate codon for glycine at position alpha 1-541 in the COL1A1 gene. The results here confirm previous indications that the effects of glycine substitutions in type I procollagen are highly position specific. They also demonstrate that a recently described technique for detecting single-base differences by carbodiimide modification of DNA heteroduplexes can be effectively employed to locate mutations in large genes.  相似文献   

11.
We have identified a point mutation in one alpha 1(I) collagen allele (COL1A1) of a child with the type IV osteogenesis imperfecta phenotype. When compared to parental and control samples, skin fibroblasts of the proband synthesized two populations of type I collagen molecules. One population was normal; the other was delayed in secretion and electrophoretic migration due to post-translational overmodification. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated a gradient of overmodification beginning near the carboxyl-terminal CB peptides. This predicts that the mutation delaying helix formation is near the carboxyl-terminal end of one of the component chains of type I collagen. The mRNA of the patient was probed with overlapping antisense riboprobes to type I collagen cDNA. Cleavage of a mismatch in RNA/RNA hybrids of RNase A allowed the location of the mutation to a 225-base pair region of alpha 1(I) cDNA. The mismatch was not present in RNA/RNA hybrids from either parent. This region of both alpha 1(I) alleles of the patient was isolated by screening a lambda ZAP cDNA library. Sequence determination of both alleles demonstrated a single nucleotide change, G----A, resulting in the substitution of a serine for a glycine at amino acid residue 832. This point mutation occurs in the coding region for alpha 1(I) CB6 and is concordant with the protein data. The finding of a glycine substitution in an alpha 1(I) chain of a patient with the milder type IV osteogenesis imperfecta phenotype requires modification of current molecular models for types II and IV osteogenesis imperfecta.  相似文献   

12.
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.  相似文献   

13.
We have investigated one member of a family with dominant osteogenesis imperfecta type IV through three generations. In protein-chemical studies of cultured fibroblasts derived from the proband, collagen I was overmodified, with normal processing of procollagen 1, normal thermal stability, and a cyanogen bromide peptide map that suggested a C-terminal location of the structural abnormality in the collagen triple helix. Sequencing of the gene encoding the 2(I) chain of collagen I (COL1A2) indicated a nine base-pair deletion of nucleotides 3418–3426. When a polymerase chain reaction product containing the nucleotides in question was electrophoresed in a 12% polyacrylamide gel, two bands with a difference in size of nine base pairs could be shown. Sequencing of the lower molecular weight band confirmed the deletion of the nine base pairs involving codons 1003–1006 of COL1A2. The deletion introduced aSfiI restriction site that was used for confirmation of the deletion in genomic DNA from the proband. The deletion resulted in the removal of three amino acids (Gly-Pro-Pro), but this did not disrupt the Gly-X-Y sequence of the collagen triple helix, as is often the case in the more common glycine substitutions. We discuss the ways in which this deletion could result in osteogenesis imperfecta.  相似文献   

14.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

15.
In general, osteogenesis imperfecta (brittle bone disease) is caused by heterozygous mutations in the genes encoding the 1 or 2 chains of type I collagen (COL1A1 and COL1A2, respectively). In this study we screened these genes in a proband presenting with the severe form (type III) of osteogenesis imperfecta for mutations which might result in the phenotype. Single-strand conformation polymorphism mapping analysis was used to identify a region suspected of harbouring the mutation and subsequent sequence analysis revealed a heterozygous G to A transition in the 2(I) gene of type I collagen in the individual. The resulting substitution of the glycine at position 238 of the chain by serine is the most N-terminal yet reported for this chain.  相似文献   

16.
We have examined the collagenous proteins extracted from skin and produced by skin fibroblast cultures from the members of a family with mild dominant osteogenesis imperfecta (OI type I). The two affected patients, mother and son, produce two populations of alpha 1(I) chains of type I collagen, one chain being normal, the other containing a cysteine within the triple-helical domain. Both forms can be incorporated into triple-helical molecules with an alpha 2(I) chain. When two mutant alpha (I) chains are incorporated into the same molecule, a disulfide bonded dimer is produced. We have characterized these chains by sodium dodecyl sulfate-gel electrophoresis and CNBr-peptide mapping and by measuring a number of biosynthetic and physical variables. The cysteine was localized to the COOH-terminal peptide alpha (I) CB6. Molecules containing the mutant chains are stable, have a normal denaturation temperature, are secreted normally, and have normal levels of post-translational modification of lysyl residues and intracellular degradation. We have compared and contrasted these observations with those made in a patient with lethal osteogenesis imperfecta in which there was a cysteine substitution in alpha 1(I) CB6 (Steinmann, B., Rao, V. H., Vogel, A., Bruckner, P., Gitzelmann, R., and Byers, P. H. (1984) J. Biol. Chem 259, 11129-11138) and have concluded that the mutation in the present family occurs in the X or Y position of a Gly-X-Y repeating unit of collagen and not in the glycine position shown for the previous patient (Cohn, D. H., Byers, P. H., Steinmann, B, and Gelinas, R. E. (1986) Proc. Natl. Acad. Sci. U. S. A., in press.  相似文献   

17.
The majority of collagen mutations causing osteogenesis imperfecta (OI) are glycine substitutions that disrupt formation of the triple helix. A rare type of collagen mutation consists of a duplication or deletion of one or two Gly-X-Y triplets. These mutations shift the register of collagen chains with respect to each other in the helix but do not interrupt the triplet sequence, yet they have severe clinical consequences. We investigated the effect of shifting the register of the collagen helix by a single Gly-X-Y triplet on collagen assembly, stability, and incorporation into fibrils and matrix. These studies utilized a triplet duplication in COL1A1 exon 44 that occurred in the cDNA and gDNA of two siblings with lethal OI. The normal allele encodes three identical Gly-Ala-Hyp triplets at aa 868-876, whereas the mutant allele encodes four. The register shift delays helix formation, causing overmodification. Differential scanning calorimetry yielded a decrease in T(m) of 2 degrees C for helices with one mutant chain and a 6 degrees C decrease in helices with two mutant chains. An in vitro binary co-processing assay of N-proteinase cleavage demonstrated that procollagen with the triplet duplication has slower N-propeptide cleavage than in normal controls or procollagen with proalpha1(I) G832S, G898S, or G997S substitutions, showing that the register shift persists through the entire helix. The register shift disrupts incorporation of mutant collagen into fibrils and matrix. Proband fibrils formed inefficiently in vitro and contained only normal helices and helices with a single mutant chain. Helices with two mutant chains and a significant portion of helices with one mutant chain did not form fibrils. In matrix deposited by proband fibroblasts, mutant chains were abundant in the immaturely cross-linked fraction but constituted a minor fraction of maturely cross-linked chains. The profound effects of shifting the collagen triplet register on chain interactions in the helix and on fibril formation correlate with the severe clinical consequences.  相似文献   

18.
Mutations in collagen genes: causes of rare and some common diseases in humans   总被引:48,自引:0,他引:48  
More than 70 mutations in the two structural genes for type I procollagen (COL1A1 and COL1A2) have been found in probands with osteogenesis imperfecta, a heritable disease of children characterized by fragility of bone and other tissues rich in type I collagen. The mutations include deletions, insertions, RNA splicing mutations, and single-base substitutions that convert a codon for glycine to a codon for an amino acid with a bulkier side chain. With a few exceptions, the most severe phenotypes of the disease are explained largely by synthesis of structurally defective pro alpha chains of type I procollagen that either interfere with the folding of the triple helix or with self-assembly of collagen into fibrils. The results emphasize the extent to which the zipperlike folding of the collagen triple helix and the self-assembly of collagen fibrils depend on the principle of nucleated growth whereby a few subunits form a nucleus and the nucleus is then propagated to generate a large structure with a precisely defined architecture. The principle of nucleated growth is a highly efficient mechanism for the assembly of large structures, but biological systems that depend extensively on nucleated growth are highly vulnerable to mutations that cause synthesis of structurally abnormal but partially functional subunits. Recently, several mutations in three other collagen genes (COL2A1, COL3A1, and COL4A5) have been found in probands with genetic diseases involving tissues rich in these collagens. Most of the probands have rare genetic diseases but a few appear to have phenotypes that are difficult to distinguish from more common disorders such as osteoarthritis, osteoporosis, and aortic aneurysms. Therefore, the results suggest that mutations in procollagen genes may cause a wide spectrum of both rare and common human diseases.  相似文献   

19.
Classical Ehlers-Danlos syndrome (EDS) is characterized by skin hyperelasticity, joint hypermobility, increased tendency to bruise, and abnormal scarring. Mutations in type V collagen, a regulator of type I collagen fibrillogenesis, have been shown to underlie this type of EDS. However, to date, mutations have been found in only a limited number of patients, which suggests genetic heterogeneity. In this article, we report two unrelated patients with typical features of classical EDS, including excessive skin fragility, in whom we found an identical arginine-->cysteine substitution in type I collagen, localized at position 134 of the alpha1(I) collagen chain. The arginine residue is highly conserved and localized in the X position of the Gly-X-Y triplet. As a consequence, intermolecular disulfide bridges are formed, resulting in type I collagen aggregates, which are retained in the cells. Whereas substitutions of glycine residues in type I collagen invariably result in osteogenesis imperfecta, substitutions of nonglycine residues in type I collagen have not yet been associated with a human disease. In contrast, arginine-->cysteine substitutions in type II collagen have been identified in a variety of chondrodysplasias. Our findings show that mutations in other fibrillar collagens can be causally involved in classical EDS and point to genetic heterogeneity of this disorder.  相似文献   

20.
A large kindred with adult-type X-linked Alport syndrome was studied with regard to a defect in the recently described COL4A5 collagen gene. Southern blot analysis with COL4A5 cDNA probes showed loss of a MspI restriction site. Direct sequencing of cDNA amplified from lymphoblast mRNA demonstrated a single-base substitution converting a glycine codon to arginine at position 325 in the alpha 5 chain of type IV collagen. The triple-helical collagenous domain of alpha 5(IV), characterized by a Gly-X-Y repeat sequence, is interrupted 22 times by noncollagenous sequences. The mutation creates an additional interruption in the Gly-X-Y repeat motif, between interruptions 4 and 5. It is interesting that such glycine substitutions inside the COL1A1 or COL1A2 genes have been associated with many cases of osteogenesis imperfecta. This gly325-to-arg substitution presumably alters the triple-helix formation, and, in turn, modifies the ultrastructural and functional characteristics of the type IV collagen network inside the glomerular basement membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号