首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lamellar bodies were isolated from dexamethasone and T3-treated explant cultures of human fetal lung, using sucrose density-gradient centrifugation. We examined their content of surfactant apoprotein A (SP-A), and their ability to form surface films and to undergo structural transformation in vitro. SP-A measured by ELISA composed less than 2% of total protein within lamellar bodies; this represented, as a minimum estimate, a 2-12-fold enrichment over homogenate. One- and two-dimensional gel electrophoresis also suggested that SP-A was a minor protein component of lamellar bodies. Adsorption of lamellar bodies to an air/water interface was moderately rapid, but accelerated dramatically upon addition of exogenous SP-A in ratios of 1:2-16 (SP-A:phospholipid, w/w). Similar adsorption patterns were seen for lamellar bodies from fresh adult rat and rabbit lung. Lamellar bodies incubated under conditions that promote formation of tubular myelin underwent structural rearrangement only in the presence of exogenous SP-A, with extensive formation of multilamellate whorls of lipid bilayers (but no classical tubular myelin lattices). We conclude that lamellar bodies are enriched in SP-A, but have insufficient content of SP-A for structural transformation to tubular myelin and rapid surface film formation in vitro.  相似文献   

2.
Using immunogold labeling of fixed, cryosubstituted tissue sections, we compared the distribution of lysozyme, an oxidant-sensitive lamellar body protein, with that of surfactant protein A (SP-A) in rat Type II cells, extracellular surfactant forms, and alveolar macrophages. Morphometric analysis of gold particle distribution revealed that lysozyme and SP-A were present throughout the secretory and endosomal pathways of Type II cells, with prominent localization of lysozyme in the peripheral compartment of lamellar bodies. All extracellular surfactant forms were labeled for both proteins with preferential labeling of tubular myelin and unilamellar vesicles. Labeling of tubular myelin for SP-A was striking when compared with that of lamellar bodies and other extracellular surfactant forms. Lamellar body-like forms and multilamellar structures were uniformly labeled for lysozyme, suggesting that this protein is rapidly redistributed within these forms after secretion of lysozyme-laden lamellar bodies. By contrast, increased labeling for SP-A was observed over peripheral membranes of lamellar body-like forms and multilamellar structures, apparently reflecting progressive SP-A enrichment of these membranes during tubular myelin formation. The results indicate that lysozyme is an integral component of the lamellar body peripheral compartment and secreted surfactant membranes, and support the concept that lysozyme may participate in the structural organization of lung surfactant.  相似文献   

3.
Lamellar bodies of lung epithelial type II cells undergo fusion with plasma membrane prior to exocytosis of surfactant into the alveolar lumen. Since synexin from adrenal glands promotes aggregation and fusion of chromaffin granules, we purified synexin-like proteins from bovine lung cytosolic fraction, and evaluated their effect on the fusion of isolated lamellar bodies and plasma membrane fractions. Synexin activity, which co-purified with an approx. 47 kDa protein (pI 6.8), was assessed by following calcium-dependent aggregation of liposomes prepared from a mixture of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1, mol/mol). Lung synexin caused aggregation of liposomes approximating lung surfactant lipid-like composition, isolated lamellar bodies, or isolated plasma membrane fraction. Lung synexin promoted fusion only in the presence of calcium. It augmented fusion between lamellar bodies and plasma membranes, lamellar bodies and liposomes, or between two populations of liposomes. However, selectivity with regard to synexin-mediated fusion was observed as synexin did not promote fusion between plasma membrane and liposomes, or between liposomes of surfactant lipid-like composition and other liposomes. These observations support a role for lung synexin in membrane fusion between the plasma membrane and lamellar bodies during exocytosis of lung surfactant, and suggest that such fusion is dependent on composition of interacting membranes.  相似文献   

4.

Background  

Lamellar bodies are lysosome-related secretory granules and store lung surfactant in alveolar type II cells. To better understand the mechanisms of surfactant secretion, we carried out proteomic analyses of lamellar bodies isolated from rat lungs.  相似文献   

5.
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.  相似文献   

6.
Exposure of rats to 3 ppm ozone for up to 8 h results in significant changes in lamellar bodies, the surfactant storing organelles of type II cells. We have previously shown that a 14 kDa lamellar body protein is decreased as early as 4 h after the onset of ozone exposure. We have isolated this ozone-sensitive protein from rat lung lamellar bodies and identified it as lysozyme by immunochemical methods, as well as by its amino acid composition, N-terminal amino acid sequence and bacteriolytic activity. Reduced lysozyme activity in isolated lamellar bodies is detected as early as 4 h after the start of ozone exposure. Following an 8 h ozone exposure, the activity does not return to control levels for at least 48 h. Lamellar body lysozyme is expected to be secreted with surfactant phospholipids, thereby contributing to the antimicrobial defense of the alveolar lining layer. The acute lysozyme deficiency seen in ozone-induced oxidant injury may reduce the resistance of the lung to infection.  相似文献   

7.
This review article attempts to present an overview of the occurrence and function of lipid storage and secretory organelles: the lamellar bodies. Morphologically these organelles vary considerably in size (100 nm to 2400 nm); they are surrounded by a membrane and contain multilamellar lipid membranes. Lamellar bodies may also contain apolipoproteins and lytic enzymes and have an acidic pH, which confers on them a lysosomal character. Under normal physiological conditions, the main function of lamellar bodies is the supply of extracellular domains with specialized lipid components related to a specialized function. The lamellar bodies of the lung epithelium are best investigated in their functional and structural features and are the storage form of the lung surfactant. They provide a monomolecular lipid film of dipalmitoyl phosphatidylcholine (DPPC) on the surface of lung alveoli to lower surface tension necessary for optimal gas exchange and a hydrophobic protective lining against environmental influences. Additional cells of the respiratory system such as the mucosa of the human nose and the bronchi contain lamellar bodies. Lamellar bodies are also found in the gastrointestinal tract, in tongue papillae, oral epithelium, and mucosa cells of the stomach. The major phospholipid of lamellar bodies in mucosa cells of the stomach is DPPC, providing a hydrophobic protective lipid film against the tissue-damaging activities of gastric juice. The hydrophobic water-protective barrier of the skin, which consists mainly of neutral lipids, however, also originates from lamellar bodies secreted by epithelial cells. Lamellar bodies, mainly consisting of DPPC, also occur in mesodermal cell layers of sliding surfaces to provide the lubrication of joints, of the peritoneum, pericardium, and pleural mesothelium. In certain pathological conditions, such as atherosclerosis, Niemann-Pick disease, lecithin:cholesterol acyltransferase (LCAT) deficiency, cholestasis, degeneration of nerves and brain, and regeneration of nerves and wound healing, lipid-containing lamellar bodies have been observed in various cells, the function of which still remains to be elucidated. In early and late lesions of atherosclerotic plaques, lamellar bodies, consisting of unesterified cholesterol and phospholipids, are associated with the extracellular matrix of the intima. During regression of fatty streaks, lamellar bodies are seen intracellularly in macrophages and smooth muscle cells. Inherited metabolic disorders, such as Niemann-Pick disease type I and type II, result in the excessive accumulation of lamellar body-containing cells, for example in bone marrow, spleen, and lymphoid tissue. Type I is a deficiency in sphingomyelinase and type II is a defect in intracellular trafficking of lipoprotein-derived cholesterol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
It has been demonstrated that lamellar bodies isolated from porcine lung have L-alpha-phosphatidate phosphohydrolase (EC 3.1.3.4) activity which cannot be accounted for by microsomal or mitochondrial contamination. Phosphatidate phosphohydrolase activity associated with the lamellar bodies is relatively insensitive to Mg2+ and more heat labile than the activity associated with whole lung microsomes. The enzyme was found to be the most active phosphohydrolase present in isolated lamellar bodies and is inhibited by 5 mM Be2+. Lamellar bodies isolated from human and rat lung tissue were also found to have this activity, and the functional role of the enzyme in lamellar bodies is proposed in relation to glycerophospholipid metabolism.  相似文献   

9.
Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglycerol, the surface-active components of pulmonary surfactant, accounted for over 80% of the total phospholipid in lung wash and lamellar bodies but for only about 50% in mitochondria and microsomes. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin accounted for over 40% of the total in mitochondria and microsomes but for only 6% in lung wash and 15% in lamellar bodies. The fatty acid composition of lamellar body phosphatidylcholine was similar to that of lung wash, but different from that of mitochondria and microsomes, in containing palmitic acid as a major component with little stearic acid and few fatty acids of chain length greater than 18 carbon atoms. The biosynthesis of phosphatidylcholine and phosphatidylglycerol was examined in the mitochondrial, microsomal, and lamellar body fractions from rat lung. Cholinephosphotransferase was largely microsomal. The activity in the lamellar body fraction could be attributed to microsomal contamination. The activity of glycerolphosphate phosphatidyltransferase, however, was high in the lamellar body fraction, although it was highest in the mitochondria and was also active in the microsomes. These data suggest that the lamellar bodies are involved both in the storage of the lipid components of surfactant and in the synthesis of at least one of those components, phosphatidylglycerol.  相似文献   

10.
1. A lamellar body-enriched fraction was isolated from whole lung homogenates of mouse lung and its contamination with microsomes, mitochondria, and cytosol protein assessed by marker enzyme analyses. 2. By measuring the activity of cholinephosphotransferase (EC 2.7.8.2) in varying amounts of microsomes in the presence and absence of a fixed quantity of lamellar bodies, it could be demonstrated unequivocally that lamellar bodies of mouse lung lack the capacity to synthesize phosphatidylcholine de novo. 3. A similar approach allowed the conclusion that lamellar bodies of mouse lung do not contain lysophosphatidylcholine acyltransferase (EC 2.3.1.23) and lysophosphatidylcholine:lysophosphatidylcholine acyltransferase (EC 2.3.1.--), enzymes which play a putative role in the formation of pulmonary 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine. The activities of these enzymes observed in lamellar body fractions could be attributed completely to contaminating microsomes and cytosol respectively. 4. Lamellar bodies contributed to the activity of microsomal lysophosphatidylcholine acyltransferase by a cooperative effect. The possible role of this cooperation in the biosynthesis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is discussed.  相似文献   

11.
A lamellar body fraction was isolated from rat alveolar granular pneumocytes in primary culture by upward flotation on a discontinuous sucrose gradient and compared with a similar fraction isolated from lung homogenates. Lamellar bodies from granular pneumocytes were free of detectable contamination with either succinate dehydrogenase or NADPH-cytochrome c reductase. There was an enrichment of acid phosphatase activity, which, based on distribution of enzyme activity on the gradient, did not appear to be a contamination from other fractions. The lamellar body fraction of granular pneumocytes yielded approx. 1 microgram protein/10(6) cells with a phospholipid-to-protein ratio (mg/mg) of 9.6 +/- 0.4 (n = 7). Composition with respect to total phospholipids was 71.0% phosphatidylcholine (disaturated phosphatidylcholine, 45.2%), 8.4% phosphatidylglycerol and 12.8% phosphatidylethanolamine. Palmitic acid comprised 66% of the fatty acids in phosphatidylcholine and 34% of those in phosphatidylglycerol. The lamellar body fraction from granular pneumocytes was similar to that from whole lung with respect to phospholipid-to-protein ratio and phospholipid composition and showed only minor differences in fatty acid composition. Ultrastructurally, lamellar bodies showed generally intact limiting membranes and lamellated structure. Lamellar bodies from granular pneumocytes showed occasional multinucleated whorls which were not seen in those isolated from lung homogenates. This study describes a method for preparing a homogeneous fraction of intact lamellar bodies from small amounts of material (6 X 10(7) granular pneumocytes). The yield on a per cell basis was higher when compared with a similar preparation from whole lung, although overall yield is small, due to loss of cells during the cell isolation procedure. This preparation may be useful to evaluate the role of lamellar bodies in the synthesis and secretion of lung surfactant by isolated granular pneumocytes.  相似文献   

12.
Lamellar bodies are members of a subclass of lysosome-related organelles referred to as secretory lysosomes. The principal constituents of the lamellar body, surfactant phospholipids, are organized into tightly packed, bilayer membranes in a process that is strongly influenced by the lung-specific, hydrophobic peptide SP-B. Newly synthesized SP-B is transported from the Golgi to the lamellar body via multivesicular bodies; in contrast, preliminary evidence suggests that newly synthesized surfactant phospholipids are transported from the ER and incorporated into the internal membranes of the lamellar body via a distinct pathway.  相似文献   

13.
14.
Mesenchymal control of branching pattern in the fetal mouse lung   总被引:1,自引:0,他引:1  
The effect of mesenchyme on specialization of respiratory epithelium in the fetal mouse was tested in organ cultures. Heterologous combinations were made between respiratory and non-respiratory lung epithelia and the corresponding mesenchymes. Isolated terminal respiratory buds of fetal mouse lungs were recombined with mesenchyme from chick lung parabronchi, mouse trachea or from the avascular, non-respiratory air sacs of chick lungs. Isolated non-branching chick air sacs were combined with mouse terminal bud mesenchyme or mesenchyme from the respiratory branches of chick lungs. Air sac epithelia branched in a pattern characteristic of the chick lung when combined with chick respiratory mesenchyme and in a pattern characteristic of mouse lung when combined with mouse terminal bud mesenchyme. Mouse terminal bud epithelia did not branch with either mouse tracheal mesenchyme or chick air sac mesenchyme but branched in a chick pattern with chick parabronchial mesenchyme. Electron microscopic examination of the cultures showed that all chick air sac epithelial cultures failed to produce surfactant (lamellar bodies) even when they branched. Control cultures of mouse terminal buds contained large numbers of lamellar bodies; mesenchyme which suppressed branching reduced the number of lamellar bodies to only a few in a small proportion of the cells. Culture medium supplemented with growth factors and hormones increased the number of lamellar bodies in heterologous mouse combinations but did not bring the number to control levels. Supplemented medium had no effect on lamellar body production by chick air sac epithelium. The results indicate that branching pattern is determined by the mesenchyme surrounding the epithelial primordium. However, the capacity to synthesize surfactant is determined by the source of the epithelium; mesenchyme may control the degree of expression but not the absolute presence or absence of the differentiated condition.  相似文献   

15.
Nuclear envelope-limited chromatin sheets (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended sheets within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission electron microscopy, resemble a sandwich of apposed nuclear envelopes separated by ~30 nm, containing a layer of parallel chromatin fibers. In this study, the ultrastructure of ELCS was compared by three different methods: (1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining, (2) high-pressure freezing/freeze substitution into plastic/sectioning and staining, and (3) high-pressure freezing/cryo-sectioning/cryo-electron microscopy. ELCS could be clearly visualized by all three methods and, consequently, must exist in vivo and are not fixation artifacts. The ~30-nm chromatin fibers could only be observed following aldehyde fixation; none were seen in cryo-sections. Electron microscopic tomography tangential views of aldehyde-fixed ELCS suggested an ordering of the separate chromatin fibers adjacent to the nuclear envelope. Possible mechanisms of this chromatin ordering are discussed.  相似文献   

16.
Lamellar bodies and alveolar lavage from adult mammalian lung contain unusually high concentrations of phosphatidylglycerol that could serve as a sensitive indicator of surfactant. Phosphatidylglycerol was absent and phosphatidylinositol was correspondingly prominent in surfactant from the preterm rabbit fetus. Phosphatidylglycerol rapidly appeared and phosphatidylinositol decreased following the delivery. Surfactant isolated from the prematurely born rabbit or from humans with respiratory distress syndrome never contained phosphatidylglycerol. Comparison between lamellar bodies from fetal and postnatal rabbits revealed remarkably similar composition except for the acidic phospholipids; however, the physico-chemical properties were different. The compressibility of the surface film (i.e. the ratio of the fractional decrease in surface area and the corresponding decrease in surface tension) at low surface tensions was higher with fetal than with postnatal surfactant, whereas the difference in minimum surface tensions was small. These data suggest that phosphatidylglycerol is not an essential component required for the formation of the complex, but it improves the properties of surfactant in stabilizing the alveoli.  相似文献   

17.
Lamellar bodies are specialized cellular organelles used for storage of surfactant by alveolar type II cells of the lung. We utilized monoclonal antibody (MAb) 3C9, which recognizes an integral lamellar body-limiting membrane protein of 180 kDa, to follow lamellar body trafficking. (125)I-labeled MAb 3C9 bound to the surface of type II cells and was internalized by the cells in a time- and concentration-dependent manner that was inhibitable by excess unlabeled antibody. The internalized antibody remained undegraded over a 4-h time period. The L2 rat lung cell line that does not have lamellar bodies did not bind iodinated 3C9. Exposure of type II cells to the secretagogues ATP, phorbol 12-myristate 13-acetate, and cAMP resulted in a 1.5- to 2-fold enhancement of binding and uptake of MAb 3C9. Calphostin C inhibited phorbol 12-myristate 13-acetate-stimulated phospholipid secretion and also reduced binding and uptake of MAb 3C9 by type II cells. Treatment of type II cells with phenylarsine oxide to obstruct clathrin-mediated endocytosis had no effect on the internalization of MAb 3C9 while markedly blocking the uptake of surfactant protein A and transferrin. An actin-mediated process was important for lamellar body membrane uptake because incubation with cytochalasin D partially inhibited MAb 3C9 incorporation by type II cells. These studies are compatible with enhanced lamellar body membrane turnover associated with surfactant secretion and indicate that this process can be monitored by the trafficking of the antigen reporter MAb 3C9.  相似文献   

18.
The specific activity of disaturated phosphatidylcholine in microsomes and lamellar bodies prepared from hamster lung tissue and in surfactant obtained by lung lavage was determined at various times following the intraperitoneal administration of [Me-3H]choline. The highest specific activity of disaturated phosphatidylcholine in the lung microsomes was attained 1 h after the administration of [3H]choline; thereafter, the specific activity declined. The specific activity of disaturated phosphatidylcholine in lamellar bodies increased steadily for 12 h after [3H]choline administration. The specific activity in lamellar bodies ater 12 h exceeded the maximum specific activity achieved in the microsomal fraction (p less than 0.005). The specific activity of the disaturated phosphatidylcholine in the alveolar lavage increased after an initial lag period of approximately 3 h, attaining the same specific activity as that of the lamellar bodies at the 12-h time point. The reported results are discussed in relation to the biosynthesis, storage, and secretion of the disaturated phosphatidylcholine associated with the lipoprotein, surfactant.  相似文献   

19.
The role of the lamellar body of the type II pneumocyte in the synthesis and storage of the phospholipids of the surfactant lipoprotein lining the alveolar surface has been investigated. Electron microscopy has been used to establish the purity of the isolated lamellar body, microsomal, and mitochondrial fractions. Additional proof of lamellar body purity was obtained by enzyme marker studies. The phospholipid:protein ratio of each of the above fractions was determined as well as that of surfactant lipoprotein isolated from rat lung. Lamellar body phospholipid:protein ratio was highest, 3.7 μmol of lipid phosphorus/mg of lung protein. The phospholipid composition of the lamellar body fraction was found to be similar to that of the isolated surfactant lipoprotein. Lamellar body phosphatidylcholine and phosphatidylglycerol each contained over 90% saturated fatty acids. The lamellar body fraction was found to possess significant acyltransferase activity between [1-14C]palmitoyl-CoA and phosphatidylcholine. This activity was somewhat higher than in the microsomal fraction and much greater than in the mitochondrial fraction. The activity in all fractions was stimulated by Ca2+ and Mg2+. [1-14C]oleoyl-CoA did not serve as an effective acyl donor. When 1-palmitoyl-2-lysophosphatidylcholine was used as the acceptor molecule and [1-14C]palmitoyl-CoA the donor, acyltransferase activity was increased over that found with phosphatidylcholine as donor in all fractions. The microsomal fraction had the greatest activity and the lamellar body fraction the least. The data obtained support the hypothesis that the lamellar body is involved in the synthesis and storage of the phospholipids of the surfactant lipoprotein complex.  相似文献   

20.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号