首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological blockade of peripheral and brain Angiotensin II (Ang II) AT(1) receptors protects against brain ischemia. To clarify the protective role of brain AT(1) receptors, we examined the effects of specific antisense oligodeoxynucleotides (AS-ODN) targeted to AT(1) receptor mRNA administered intracisternally to spontaneously hypertensive rats (SHRs), 4 and 7 days before middle cerebral artery (MCA) occlusion, and we determined the infarct size and tissue swelling 24 h after surgery. A single intracisternal injection of AT(1) mRNA receptor antisense oligodeoxynucleotides reduced systemic blood pressure for 5 days and AT(1) receptor binding for at least 4 days in the area postrema and the nucleus of the solitary tract. A similar injection of scrambled oligodeoxynucleotides (SC-ODN) was without effect. Both blood pressure and AT(1) receptor binding returned to normal 7 days after antisense receptor mRNA administration. Both the infarction size and the tissue swelling after middle cerebral artery occlusion were reduced when the antisense oligodeoxynucleotide was administered 7 days, but not 4 days, before the operation. We conclude that 4 to 5 days of decrease in brain AT(1) receptor binding by a single administration of an AT(1) receptor mRNA oligodeoxynucleotide are sufficient to significantly protect the brain against ischemia resulting from total occlusion of a major cerebral vessel.  相似文献   

2.
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.  相似文献   

3.
The effects of nimodipine, a 1,4-dihydropyridine calcium channel blocker, on multiunit activity (MUA) of several brain structures were investigated in cats during 6 h immediately following acute global cerebral ischemia-anoxia induced by a 10 min cardiorespiratory arrest (CRA), as well as in cats exposed to sham procedures corresponding to CRA. Four groups of cats were studied: 1) CRA and continuous administration of nimodipine, 1 microgram/kg/min iv during 6 h; 2) CRA and continuous administration of vehicle; 3) sham and continuous administration of nimodipine as in group 1; 4) sham and vehicle as in group 2. MUA and electroencephalogram disappeared during ischemia-anoxia; their progressive recovery occurred throughout the hours following CRA, although 6 h after CRA MUA was still lower than its control prearrest values in all the recorded subcortical structures. Delta-like waves, isolated spikes, and bursts of fast EEG waves occurred during the recovery of EEG activity. Nimodipine inhibited the otherwise increasing MUA in mesencephalic reticular formation, hippocampus and putamen, but not in ventromedial hypothalamus, during the hours following acute global cerebral ischemia-anoxia. Absence of isolated spikes and bursts of fast EEG activity was noted in the EEG of CRA-, nimodipine-treated cats. Nimodipine significantly reduced MUA in hippocampus but not in other cerebral structures in cats of the sham treated group. The results suggest the involvement of 1,4 dihydropyridine sensitive calcium channels in the cellular mechanisms related to neuronal activity after cerebral ischemia-anoxia, and the possible relationship between the effects of nimodipine on MUA and better functional conditions of the central nervous system after acute global cerebral ischemia-anoxia.  相似文献   

4.
Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain.  相似文献   

5.
'York Imperial' apple seedlings ( Malus domestica Borkh.) were continuously supplied via the roots with paclobutrazol [(2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol)], a triazole GA biosynthesis inhibitor, at 0.68 μ M in a nutrient solution. In comparison to controls, seedlings treated with paclobutrazol for 66 days showed a 91% reduction in shoot length, a 66% reduction in leaf area but only a 17% reduction in leaf number. This effect could be reversed by GA3 applied to the foliage at 71.4 μ M 0, 19 or 35 days after paclobutrazol was initially supplied and leaf area values for paclobutrazol-treated seedlings given both treatments did not differ significantly from controls. Plots of growth data indicate linearity of shoot longitudinal growth of GA3-treated seedlings. Leaf area increase was non-linear after GA3 treatment up to approximately 30 days, when the rate dropped. On a per shoot basis, leaf weight closely followed leaf area but on a per unit area basis, paclobutrazol-treated leaves were heavier than controls; GA3 applications temporarily reversed this trend.  相似文献   

6.
The effects of alphaxalone-alphadolone acetate (27.07 microM/kg-7.68 microM/kg) on neurologic injury following acute cerebral ischemia induced by an 8 min cardiorespiratory arrest (CRA) were investigated in cats through the analysis of neurological deficit scores and brain electrical activity; i.e., electroencephalogram (EEG) from parieto-occipital cortices and EEG and multiunit activity (MUA) from mesencephalic reticular formation (MRF). The CRA resulted from electrically induced cardiac arrest and stopping of mechanical ventilation in paralyzed cats which were successfully resuscitated within the immediate 4 min after the end of CRA. Two groups of cats were studied: I. Untreated, which received saline iv; II. Treated, which received alphaxalone-alphadolone acetate iv, 7-9 min after the end of CRA. Neuromuscular blockade and mechanical ventilation were maintained until 8 h following the CRA; then the cats were allowed to recover spontaneous respiratory activity. EEG phenomena were different in untreated and treated cats during this immediate post-arrest period. The former showed rhythmic bursts of fast (12-20 Hz) EEG activity at 1-2 sec intervals from 15-20 min until 3-4 h after the CRA, abundant spikes and delta-like waves. By contrast, administration of alphaxalone-alphadolone acetate resulted in burst suppression EEG pattern during 1 h. Progressive recovery of background EEG activity occurred afterwards. MUA from MRF disappeared during the CRA, however 6 h later the mean MUA frequency in untreated cats ranged between 32-46% and in treated cats 18-27% of their control mean frequencies during paradoxical sleep (100%). Daily electrographic records were performed in all the cats during quiet attentive behavior at each of the five days following the CRA. Significant differences were found in the frequency distributions of MUA from MRF (1st day, p less than 0.01; 5th day, p less than 0.01) as well as in the cortical EEG waves (1st day, p less than 0.01; 5th day, p less than 0.05) before and after the CRA in the untreated group. A wide dispersion of MUA values, and increased proportions of delta and theta-like waves and spindle bursts, besides a significantly high (p less than 0.001) number of spikes occurred in these EEG records the days following the CRA. The frequency distributions of MUA and EEG did not significantly differ before and after the CRA in the treated group; however, a significantly high (p less than 0.05) number of spikes was found in treated cats following the CRA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We hypothesize that early ischemic preconditioning (IPC) can afford protection against focal brief and prolonged cerebral ischemia with subsequent reperfusion as well as permanent brain ischemia in rats by amelioration of regional cerebral blood flow. Adult male Wistar rats (n=97) were subjected to transient (30 and 60 minutes) and permanent middle cerebral artery (MCA) occlusion. IPC protocol consisted of two episodes of 5-min common carotid artery occlusion + 5-min reperfusion prior to test ischemia either followed by 48 hours of reperfusion or not. Triphenyltetrazolium chloride and Evans blue were used for delineation of infarct size and anatomical area at risk (comprises ischemic penumbra and ischemic core), respectively. Blood flow in the MCA vascular bed was measured with use of Doppler ultrasound. The IPC resulted in significant infarct size limitation in both transient and permanent MCA occlusion. Importantly, IPC caused significant reduction of area at risk after 30 min of focal ischemia as compared to controls [med(min-max) 11.4% (3.59-2 0.35%) vs. 2.47% (0.8-9.31%), p = 0.018] but it failed to influence area at risk after 5 min of ischemia [med(min-max) 7.61% (6.32-10.87%) vs. 8.2% (4.87-9.65%), p > 0.05]. No differences in blood flow were found between IPC and control groups using Doppler ultrasound. This is suggestive of the fact that IPC does not really influence blood flow in the large cerebral arteries such as MCA but it might have some effect on smaller arteries. It seems that, along with well established cytoprotective effects of IPC, IPC-mediated reduction of area at risk by means of improvement in local cerebral blood flow may contribute to infarct size limitation after focal transient and permanent brain ischemia in rats.  相似文献   

8.
Summary 1. The time course of nitric oxide synthase (NOS) activity in neuronal, endothelial, and glial cells in the rat striatum after middle cerebral artery (MCA) occlusion and reperfusion was examined using a histochemical NADPH-diaphorase staining method.2. In sham-operated rats, neuronal cells of the striatum exhibited strong NADPH-diaphorase activities. When rats were subjected to MCA occlusion for 1 hr, neuronal damage, including neurons with positive NADPH-diaphorase activities, appeared in the striatum at 3 hr after and extended to all areas of the striatum 3–4 days after reperfusion.3. NADPH-diaphorase activities in the endothelial cells increased in the damaged part of striatum from 3 hr after, peaked at 1–2 days after MCA occlusion/reperfusion, then gradually decreased.4. In parallel with the development of neuronal damage, some astrocytes and a high proportion of microglia/macrophages located in the perisite and in the center of the damaged striatum, respectively, exhibited a moderate to high level of NADPH-diaphorase activities. Most of these activities disappeared at 4 days after MCA occlusion.5. These findings provided evidence that an inappropriate activation of NOS in endothelial cells and microglia/macrophages, in response to MCA occlusion/reperfusion, is closely associated with initiation and progression of ischemic neuronal injury in the striatum.  相似文献   

9.
Zhu D  Li R  Liu G  Hua W 《Life sciences》1999,65(15):PL221-PL231
The effect of nimodipine on nitric oxide synthase (NOS) activities in brains in transient focal cerebral ischemia rats, in cultured mouse neurons and astroglial cells and bovine brain capillary endothelial cells (BCECs) was investigated. The administration of nimodipine (3 mg.kg(-1), p.o., twice a day, for 3 days) before middle cerebral artery (MCA) occlusion significantly reduced infarct size, decreased nitrite/nitrate (NOx) content and inhibited Ca2+-independent NOS activity in the infarct area. Nimodipine inhibited the Ca2+-independent NOS activity induced by lipopolysaccharide (LPS) + tumor necrosis factor alpha (TNF alpha) in mouse astroglial cells with an IC50 value of 0.036+/-0.003 mM and Ca2+-dependent NOS activity in mouse neurons with an IC50 value of 0.047+/-0.003 mM, but did not affect Ca2+-dependent NOS activity in BCECs. The inhibition of Ca2+-independent NOS activity by nimodipine in astroglial cells was competitive with respect to L-arginine. Nimodipine also inhibited the induction of Ca2+-independent NOS activity in vitro. These results suggest that nimodipine in addition to its cerebral vasodilating effect may protect brain from ischemic neuronal damage through modifying NOS activity.  相似文献   

10.
Young adult Louis rats were implanted for chronic sleep recording to test the effect of diethyldithiocarbamate (DDC) on sleep. Recordings of EEG and EMG were done continuously for 12 h during the 12 consecutive days. There were 2 days of baseline recording, 3 days of recording with a single daily injection of placebo, 3 days of recording with a single daily injection of DDC (500 mg/kg i.p.), and 3 days of DDC withdrawal recording with placebo injection. Placebo injections did not change the proportion of time spent in different behavioural states. With daily injection of DDC there was an increase in wakefulness, no change in slow-wave sleep and elimination or drastic reduction in paradoxical sleep (PS). There was no PS rebound during the DDC withdrawal days. These results suggest that the reduction of PS produced by DDC and the absence of PS rebound may be due to a lowering in norepinephrine in the brain. In other experiments rats were injected with DDC (500 mg/kg i.p.) daily for 3 days and whole brains were analysed chemically. Norepinephrine was significantly decreased, while 5-hydroxytryptamine, 5-hydroxyindolacetic acid, dopamine and homovanilic acid were unchanged. Seizure activity appeared during relaxed wakefulness in all rats treated with DDC. Taken together it seems that lowering of brain NE is responsible for the appearance of seizure activity and also, for PS reduction. PS reduction might, per se, produce seizure activity.  相似文献   

11.
Z Pittel  A Fisher  E Heldman 《Life sciences》1989,44(20):1437-1448
The effect of ethylcholine aziridinium ion (AF64A) after an intracerebroventricular (icv) injection was compared to that obtained after an intravascular administration. Reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities in the hippocampus but not in the cerebral cortex or the corpus striatum were observed 10 days after bilateral injection of AF64A into the rat cerebroventricles (3 nmol/side). However, when AF64A was injected into the carotid artery (1 mumol/kg) following a unilateral opening of the blood-brain barrier by a hypertonic treatment, a significant decrease in ChAT activity was observed in the ipsilateral side of the cerebral cortex but not in hippocampus, corpus striatum, or cerebellum. High-affinity choline transport was reduced significantly 11 days after an icv injection of AF64A in all the above mentioned brain regions, and recovered 60 days post injection in the cerebral cortex and in the corpus striatum but not in the hippocampus. Our results suggest that in various brain regions, AF64A causes various degrees of damage to cholinergic neurons, depending on the quantity of the toxin that reaches the target tissue.  相似文献   

12.
Chronic exposure in a low-PO(2) environment (i.e., chronic hypoxia, CH) elicits an elevated hypoxic ventilatory response and increased hypoxic chemosensitivity in arterial chemoreceptors in the carotid body. In the present study, we examine the hypothesis that changes in chemosensitivity are mediated by endothelin (ET), a 21-amino-acid peptide, and ET(A) receptors, both of which are normally expressed by O(2)-sensitive type I cells. Immunocytochemical staining showed incremental increases in ET and ET(A) expression in type I cells after 3, 7, and 14 days of CH (380 Torr). Peptide and receptor upregulation was confirmed in quantitative RT-PCR assays conducted after 14 days of CH. In vitro recordings of carotid sinus nerve activity after in vivo exposure to CH for 1-16 days demonstrated a time-dependent increase in chemoreceptor activity evoked by acute hypoxia. In normal carotid body, the specific ET(A) antagonist BQ-123 (5 microM) inhibited 11% of the nerve discharge elicited by hypoxia, and after 3 days of CH the drug diminished the hypoxia-evoked discharge by 20% (P < 0.01). This inhibitory effect progressed to 45% at day 9 of CH and to nearly 50% after 12, 14, and 16 days of CH. Furthermore, in the presence of BQ-123, the magnitude of the activity evoked by hypoxia did not differ in normal vs. CH preparations, indicating that the increased activity was the result of endogenous ET acting on an increasing number of ET(A). Collectively, our data suggest that ET and ET(A) autoreceptors on O(2)-sensitive type I cells play a critical role in CH-induced increased chemosensitivity in the rat carotid body.  相似文献   

13.
Postischemic recovery from brain edema and of protein synthesis was examined following 1 h of middle cerebral artery (MCA) occlusion in rats. Recovery from brain edema and of protein synthesis showed a good correlation until 7 days after reperfusion in each area (cerebral cortex or lateral caudate) in the occluded MCA side. However, regional differences in the above types of recovery in the cortex and in the lateral caudate were found for the first time in this experiment. A profound inhibition of protein synthesis and formation of brain edema began sooner in the lateral caudate than in the cortex and continued long after reperfusion. Grades of cerebral blood flow during ischemia and the early period of reperfusion were almost the same in the two regions. Therefore, the regional differences in the above recoveries may not be due to the difference in the blood flow during ischemia and reperfusion, but may be partly attributable to the imbalance of excitatory and inhibitory innervation in the above two areas of the brain, may be due to a distinctive response to ischemic stress, and may be caused also by the potentiative effect of free arachidonate on the excitotoxic mechanism.  相似文献   

14.
Diabetes causes vascular injury and carries a high risk of ischaemic stroke. Human amniotic fluid stem cells ( hAFSCs) can enhance cerebral vascular remodelling and have the potential to improve neurological function after stroke in diabetic rats. Five groups of female rats were examined: (1) normal control, (2) type 1 diabetic (T1DM) rats induced by streptozotocin injection (DM), (3) non-DM rats receiving 60-minute middle cerebral artery occlusion (MCAO), (4) T1DM rats receiving 60-minute MCAO (DM + MCAO) and (5) T1DM rats receiving 60-minute MCAO and injection with 5 × 106 hAFSCs at 3 h after MCAO (DM + MCAO + hAFSCs). Neurological function was examined before, and at 1, 7, 14, 21 and 28 days, and cerebral infarction volume and haemorrhage, cerebral vascular density, angiogenesis and inflammatory were examined at 7 and 28 days after MCAO. hAFSCs treatment caused a significant improvement of neurological dysfunction, infarction volume, blood-brain barrier leakage, cerebral arterial density, vascular density and angiogenesis and a reduction of brain haemorrhage and inflammation compared with non-treatment. Our results showed that the effect of hAFSCs treatment against focal cerebral ischaemia may act through the recovery of vascular remodelling and angiogenesis and the reduction of inflammation in ischaemic brain.  相似文献   

15.
Ethanol-induced analgesia   总被引:1,自引:0,他引:1  
L A Pohorecky  P Shah 《Life sciences》1987,41(10):1289-1295
The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5-1.5 g/kg) produced rapid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity.  相似文献   

16.
Transient focal cerebral ischemia in the rat alters vessel properties, and spontaneously hypertensive rats (SHR) show a poorer outcome after ischemia. In the present study we examined the role of hypertension on vessel properties after ischemia-reperfusion. The right middle cerebral artery (MCA) was occluded (90 min) and reperfused (24 h) in SHR (n = 12) and Wistar-Kyoto rats (WKY; n = 11). Sham-operated rats (SHR, n = 10; WKY, n = 10) were used as controls. The structural, mechanical, and myogenic properties of the MCA were assessed by pressure myography. Nuclei distribution and elastin content and organization were analyzed by confocal microscopy. Infarct volume was larger in SHR than in WKY rats. Ischemia-reperfusion induced adventitial hypertrophy associated with an increase in the total number of adventitial cells. In addition, fenestrae area and arterial distensibility increased and myogenic tone decreased in the MCA of WKY rats after ischemia-reperfusion. Hypertension per se induced hypertrophic inward remodeling. Ischemia-reperfusion decreased the cross-sectional area of the MCA in SHR, without significant changes in distensibility, despite an increase in fenestrae area. In addition, MCA myogenic properties were not altered after ischemia-reperfusion in SHR. Our results indicate that in normotensive rats, MCA develops a compensatory mechanism (i.e., enhanced distensibility and decreased myogenic tone) that counteracts the effect of ischemia-reperfusion and ensures correct cerebral irrigation. These compensatory mechanisms are lost in hypertension, thereby explaining, at least in part, the greater infarct volume observed in SHR.  相似文献   

17.
Kondoh T  Uneyama H  Nishino H  Torii K 《Life sciences》2002,72(4-5):583-590
Reduction of cerebral edema, an early symptom of ischemia, is one of the most important remedies for reducing subsequent chronic neural damage in stroke. Melatonin, a metabolite of tryptophan released from the pineal gland, has been found to be effective against neurotoxicity in vitro. The present study was aimed to demonstrate the effectiveness of melatonin in vivo in reducing ischemia-induced edema using magnetic resonance imaging (MRI). Rats were subjected to middle cerebral artery (MCA) occlusion/reperfusion surgery. Melatonin was administered twice (6.0 mg/kg, p.o.): just prior to 1 h MCA occlusion and 1 day after the surgery. T2-weighted multislice spin-echo images were acquired 1 day after the surgery. Increases in T2-weighted signals in ischemic sites of the brain were clearly observed after MCA occlusion. The signal increase was found mainly in the striatum and in the cerebral cortex in saline-treated control rats. In the melatonin-treated group, the total volume of cerebral edema was reduced by 45.3% compared to control group (P < 0.01). The protective effect of melatonin against cerebral edema was more clearly observed in the cerebral cortex (reduced by 56.1%, P < 0.01), while the reduction of edema volume in the striatum was weak (reduced by 23.0%). The present MRI study clearly demonstrated that melatonin is effective in reducing edema formation in ischemic animals in vivo, especially in the cerebral cortex. Melatonin may be highly useful in preventing cortical dysfunctions such as motor, sensory, memory, and psychological impairments.  相似文献   

18.
Cerebral insult is associated with a rapid increase in free fatty acids (FFA) and arachidonic acid release has been linked to the increase in eicosanoid biosynthesis. In transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, there is an inverse relationship between the increase in FFA and the decrease in ATP, both during the ischemia period and at later time periods after reperfusion. In this study, the focal cerebral ischemia model was used to examine incorporation of [14C]arachidonic acid into the glycerolipids in rat MCA cortex at different reperfusion times after a 60 min ischemia. The label was injected intracerebrally into left and right MCA cortex 1 hr prior to decapitation. Labeled arachidonic acid was incorporated into phosphatidylcholine, phosphatidylethanolamine and neutral glycerides. With increasing time (4–16 hr) after a 60 min ischemia, an inhibition of labeled arachidonate uptake could be found in the right ischemic MCA cortex, whereas the distribution of radioactivity among the major phospholipids was not altered. When compared to labeled PC, there was a 3–4 fold increase in incorporation of label into phosphatidic acid and triacylglycerols (TG) in the right MCA cortex, suggesting of an increase in de novo biosynthesis of TG. In an in vitro assay system, synaptosomal membranes isolated from MCA cortex 8 and 16 hr after a 60 min ischemia showed a significant decrease in arachidonoyl transfer to lysophospholipids, due mainly to a decrease in lysophospholipid:acylCoA acyltransferase activity. Assay of phospholipase A2 activity with both syaptosomes and cytosol, however, did not show differences between left and right MCA cortex or with time after reperfusion. These results suggest that besides ATP availability, the decrease in acyltransferase activity may also contribute to the increase in FFA in cerebral ischemia-reperfusion.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PEpl ethanolamine plasmalogen - PI phosphatidylinositol - PS phosphatidylserine - poly-PI polyphosphoinsoitide - DG diacylglycerol - TG triacylglycerol - FFA free fatty acids - PUFA polyunsaturated fatty acids - MCA middle cerebral artery - CCAs common carotid arteries - HPTLC high performance thin layer chromatography - GLC gas-liquid chromatography - PLA2 phospholipase A2 Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

19.
The electrophysiological effects of unilateral MCA occlusion for 45 minutes and subsequent recirculation for 3 hours were studied in cats. EEG, steady (DC) potentials, tissue available O2 were measured and metabolic changes were studied. Computed EEG analysis was carried out off line, changes in frequency index and total intensity were analyzed and compared to regional metabolic alterations. It is concluded that: 1. Exenteration of the orbita results in significant and long lasting changes of the EEG, so, a less traumatic method of focal ischemia should be elaborated. 2. Changes in EEG (intensity or frequency content) caused by 45 min MCA occlusion seldom exhibit complete restitution by the end of a 3 hours long recirculation period. 3. Diaschisis can often be detected in this focal ischemic model by computed EEG evaluation. 4. Severe electrophysiological alterations after recirculation usually reflected extended metabolic damage. Mild EEG disturbances can cover both biochemically intact or slightly injured brain tissue.  相似文献   

20.
In the present study we investigated the effect of chronic hypermethioninemia on rat performance in the Morris water maze task, as well as on acetylcholinesterase (AChE) activity in rat cerebral cortex. For chronic treatment, rats received subcutaneous injections of methionine (1.34–2.68 μmol/g of body weight), twice a day, from the 6th to the 28th day of age; control rats received the same volume of saline solution. Groups of rats were killed 3 h, 12 h or 30 days after the last injection of methionine to AChE assay and another group was left to recover until the 60th day of life to assess the effect of early methionine administration on reference and working spatial memory of rats. AChE activity was also determined after behavioral task. Results showed that chronic treatment with methionine did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant days effect with significant differences between control and methionine-treated animals. Chronic hypermethioninemia significantly increased AChE activity at 3 h, 12 h or 30 days after the last injection of methionine, as well as before or after behavioral test. The effect of acute hypermethioninemia on AChE was also evaluated. For acute treatment, 29-day-old rats received one single injection of methionine (2.68 μmol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that acute administration of methionine did not alter cerebral cortex AChE activity. Our findings suggest that chronic experimental hypermethioninemia caused cognitive dysfunction and an increase of AChE activity that might be related, at least in part, to the neurological problems presented by hypermethioninemic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号