首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemistry of axial filaments of Treponema zuezerae   总被引:10,自引:3,他引:7       下载免费PDF全文
Highly purified axial filaments have been prepared from the spirochete Treponema zuelzerae, which possess a fine structure similar to the "beaded" form of bacterial flagella. The preparations consist largely of protein but also contain small amounts of hexose (less than 1%). The buoyant density of these filaments is 1.29 g/cm(3). At pH 4.3, in the presence of 4 m urea and 10(-3)m ethylenediaminetetraacetic acid, filament protein migrates as a single band in acrylamide gel electrophoresis. Filaments dissociate to subunits in acid, alkali, urea, guanidine or with heating, indicating that these subunits are not covalently bonded in the organized structure. This is consistent with amino acid analysis which reveals that, like bacterial flagella, the filaments are completely lacking in half-cystine. Sedimentation equilibrium measurements on dissociated axial filaments in 6 m guanidine show that the subunits are homogeneous with respect to molecular weight. A weight-average molecular weight of 37,000 +/- 1,600 daltons is obtained from these measurements. The amino acid composition of axial filaments is similar to that of various types of flagellin molecules, but the filament protein is somewhat richer in tyrosine, phenylalanine, and proline than flagellin. Tryptic peptide maps of axial filaments are consistent with the amino acid composition calculated for a molecular weight of 37,000 daltons. No amino terminal end group could be detected by the dansyl chloride method, suggesting that this end group might be blocked in the axial filament protein. The results obtained show that the axial filaments of T. zuelzerae are similar chemically to bacterial flagella and suggest that they are composed of aggregates of a single species of protein subunit.  相似文献   

2.
1. D-Galactose dehydrogenase from Pseudomonas saccharophila (molecular weight 102 000) dissociates in 8 M urea into its subunits (molecular weight 25 000) which migrate in polyacrylamide gels, containing 8 M urea, as a single band. 2. The N-terminal residue determination by the dansyl method revealed only serine. 3. The C-terminal group determination with carboxypeptidase A and B indicated the sequence -Tyr-His-Leu. Leucine as the single C-terminal amino acid was confirmed by the tritiation method and by tritiation and subsequent degradation with carboxypeptidases. 4. The fragmentation of D-galactose dehydrogenase (24 mol methionine per mol enzyme) by CNBr resulted in six peptides, as detected in disc electrophoresis and substantiated by end group determination, indicating the identity of the subunits. 5. The treatment of D-galactose dehydrogenase (24 mol lysine and 52 mol arginine per mol enzyme) with trypsin and subsequent peptide mapping showed 21, perhaps 22 peptides, indicating a structure comprising four identical subunits.  相似文献   

3.
A crystalline tryptophanase can be obtained from extracts of Spaerophorus funduliformis using a heat treatment, hydroxyapatite chromatography and solubility in solutions of (NH4)2SO4 as a function of pH and temperature. The purified enzyme is homogeneous by several criteria. S. funduliformis tryptophanase has a specific activity of 11.5-13.5 and requires pyridoxal 5'-phosphate for enzymatic activity. Like other tryptophanases that have been studied, the S. funduliformis enzyme is a tetramer protein consisting of four apparently identical subunits. The native enzyme has a sedimentation coefficient of 11.2 S and a molecular weight of 244 000. In solutions of 5 M guanidine - HCl, 8 M urea, and sodium dodecylsulfate, at high pH or in the presence of thiols, the enzyme dissociates to 59 000 molecular weight species which are homogeneous by the criterion of weight. Peptide maps of the reduced holo-tryptophanase show one pyridoxal-containing peptide and, lacking agreement with the determined amino acid composition, suggest that the subunits of the enzyme contain a high degree of internal sequence homology.  相似文献   

4.
Dissociation and reassembly of Escherichia coli type 1 pili.   总被引:41,自引:12,他引:29       下载免费PDF全文
Escherichia coli type 1 pili, which mediate the mannose-sensitive adherence of the bacterium to eucaryotic cells, are comprised of very stable arrays of pilin protein subunits (molecular weight, approximately 17,000). Previous methods for the dissociation of pili caused their irreversible denaturation. We have found that incubation of pili in saturated guanidine hydrochloride at 37 degrees C led to their complete dissociation, as evidenced by nephelometry and electron microscopy. Gel chromatography of the dissociated pili on a Sepharose CL-6B column in the presence of saturated guanidine hydrochloride yielded a single protein peak with a molecular weight corresponding to that of pilin. Dialysis of this peak against 5 mM tris(hydroxymethyl)aminomethane hydrochloride (pH 8.0) and rechromatography in the same buffer afforded a major protein peak, probably consisting of pilin dimers. About 25% of the protein in this peak bound to a mannan-sepharose column and could be eluted with methyl alpha-D-mannoside. The pilin dimer gave a single protein band upon polyacrylamide gel electrophoresis in the presence of 0.1% sodium dodecyl sulfate (molecular weight, 16,600) or 10 M urea and penetrated completely into 7% gels in the absence of denaturants. Reassembly of the pilin dimers into pili was achieved upon dialysis against the tris(hydroxymethyl)aminomethane buffer containing 5 mM MgCl2, as observed by electron microscopy. Thus, the conditions used allow renaturation of the dissociated subunits and may aid in further studies of the structure-function relationship of pili.  相似文献   

5.
Fatty acid synthetase from Mycobacterium smegmatis has been purified to near homogeneity as judged by a variety of electrophoretic criteria under both native and dissociating conditions. A single protein band was obtained on gel electrophoresis in sodium dodecyl sulfate or 8 M urea at various pH values and on isoelectric focusing in 8 M urea. A subunit molecular weight of about 290,000 was found by polyacrylamide gel electrophoresis in sodium dodecyl sulfate or by sedimentation equilibrium ultracentrifugation in 6 M guanidine HCl. Quantitative Quantitative determination of pantetheine, of flavin, and of the number of fatty acids synthesized during a single enzyme turnover all yield values corresponding to a stoichiometry of about 1 mol per mol of subunit, providing strong evidence that M. smegmatis fatty acid synthetase is an oligomer of identical, multifunctional polypeptide chains.  相似文献   

6.
The molecular weight of the extracellular hemoglobin of Tubifex tubifex determined by equilibrium sedimentation is 3.0 +/- 0.2 . 10(6). Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that the hemoglobin dissociated into four subunits: 13 000 (subunit 1), 21 000 (subunit 2), 23 000 (subunit 3) and 47 000 (subunit 4); in the presence of mercaptoethanol two subunits were observed, 13 000 +/- 1000 (subunit I) accounting for 70--80% of the whole molecule, and 26 000 (subunit II). Electrophoresis of the subunits obtained in the absence of mercaptoethanol showed that subunit I originated from subunits 1 and 4, while subunit II originated from subunits 2 and 3. These relationships were supported by N-terminal group determinations. Gel filtration in 6 M guanidine hydrochloride showed that the molecular weight of subunit I is 17 500 and that of subunit II, 36 000. Tubifex hemoglobin appears to consist of at least seven polypeptide chains.  相似文献   

7.
Individual hexokinase isoenzymes (isoHK) are isolated from normal and malignant human stomach mucosa. IsoHK from tumour tissue are found to have KM for glucose 10 times as low as isoHK from normal tissue. Molecular weights of individual isoHK from normal and tumour tissues are similar (at the range of 112,000-125,000). The treatment of protein preparation with 8M urea in the presence of 1% sodium docecyl sulphate resulted in the appearance of a single band with molecular weight of 58,000-60,000 for all the isoHK under polyacrylamide gel electrophoresis. Intensive bands with molecular weight of 60,000 and 96,000 and a number of minor bands were observed under polyacrylamide gel disc elect-ophoresis in the absence of urea. 2-Mercaptoethanol did not affect the results of disc electrophoresis. It is concluded that the molecule of human hexokinase consists of two subunits with molecular weight of 60,000.  相似文献   

8.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

9.
Prekeratin was isolated from bovine snout epidermis with 0.1 M citric acid/sodium citrate buffer, pH 2.6 (buffer A). Filaments, 6.0-9.0 nm wide, were produced by dialysis against low ionic strength buffer A or by dissociating prekeratin in 8 M urea solution followed by dialysis against 0.005 M Tris-HCl buffer, pH 8.0. The polypeptide composition of both prekeratin and filaments was studied by four different SDS-polyacrylamide gel electrophoresis methods. The best resolution was obtained by Laemmli's technique in which both prekeratin and filaments were separated into three major and seven distinct minor bands of polypeptides. The major ones comprise approx. 70% of total polypeptides and their estimated molecular weights are 68 000, 54 000, and 50 000. The molecular weight of minor ones is in decreasing order 65 000, 63 000, 61 000, 58 000, 47 000, 44 000 and 42 000. It is proposed that the major polypeptides form the backbone structure of epidermal filaments and the minor polypeptides play a role in its stabilization.  相似文献   

10.
1. The hemocyanin from the marine snail, Fasciolaria tulipa has a molecular weight of 8.6 +/- 0.6 x 10(6) determined by light-scattering and a sedimentation constant of (105.9 +/- 1.1)S. 2. The dissociated subunits at pH 11 and in 8.0 M urea (pH 7.4) had molecular weights of 4.4 x 10(5) and 4.7 x 10(5), close to one-twentieth of the parent didecameric assembly. 3. The pH dependence of the molecular weight profile exhibited bell-shaped transitions in both the presence and absence of Ca2+ and Mg2+ ions. In the physiological pH range of about 7.5-8.2 in divalent ion-containing buffers neither the molecular weight behavior nor the sedimentation patterns suggest any significant dissociation. 4. Both the urea and the Hofmeister salt series were found to dissociate the didecameric hemocyanin assembly. The ureas exhibit increasing effectiveness as dissociating agents with the higher alkyl substituted members of the series, suggesting hydrophobic stabilization of the subunit assembly. 5. Denaturation of the hemocyanin subunits by the urea series follows the same trend in effectiveness as the dissociation reaction; the reagent concentrations required to cause unfolding of the globular domains of the hemocyanin chains were, however, much higher than those needed for dissociation.  相似文献   

11.
When crude neurofilaments were dissolved in a solution containing 8 M urea and 1% beta-mercaptoethanol (beta-ME), the component proteins of the neurofilaments and other contaminating filaments were solubilized into monomeric forms. However, when reassembled filaments were solubilized again by the addition of urea to 8 M without beta-ME, several bands which seemed to be oligomeric forms of filament proteins were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Among them, a band which appeared between microtubule-associated protein-1 (MAP-1) and fodrin was most remarkable. This band was also observed when a triplet mixture of the neurofilaments (NF-H, NF-M, NF-L) was reassembled. The molecular weight of this band was estimated to be 280 kDa. In addition, much of this component was easily isolated on DE-52 column chromatography of the reassembled crude neurofilament proteins with buffers containing 6 M urea, while the low molecular weight component of the neurofilaments (NF-L, 70 kDa) was hardly detected. Furthermore, the isolated 280 kDa component was reduced to NF-L on the addition of beta-ME to 1%. In contrast, the 280 kDa component was produced on dialysis of isolated NF-L against the assembly buffer. From these results, it is deduced that this component is the stable tetramer of NF-L which is produced through spontaneous interchain disulfide formation among protofilament tetramers.  相似文献   

12.
Phosphoribosylpyrophosphate (PRPP) synthetase (EC 2.7.6.1) was purified to virtual homogeneity from Salmonella typhimurium cells by a modification of previously published procedures. The molecular weight of the subunit was determined to be 31,000 +/- 3,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium analysis of the enzyme dissolved in 6 M guanidine hydrochloride. The amino acid composition of the enzyme was determined. Proline was identified as the only NH2-terminal residue. PRPP synthetase is apparently composed of identical or nearly identical subunits. NATIVE PRPP synthetase exists in multiple states of aggregation under all conditions. However, two predominant states were demonstrated under certain conditions. A form with molecular weight of 320,000 +/- 20,000 was found at pH 7.5 in the presence of MgATP. At pH 8.2 to 8.6, with or without MgATP, the predominant form corresponded to a molecular weight of 150,000 to 200,000; sedimentation equilibrium and velocity analysis indicated 160,000 +/- 15,000 as the most reliable molecular weight. More highly aggregated forms were observed at 4 degrees and higher protein concentrations. Removal of inorganic phosphate from PRPP synthetase by dilution or dialysis resulted in disaggregation. The fundamental unit of PRPP synthetase appears to consist of five (or possibly six) subunits, which can associate to form a dimer (10 or 12 subunits) and more highly aggregated forms. A pentameric subunit structure is consistent with the multiple species resolved by electrophoresis of the native enzyme in discontinuous polyacrylamide gel systems. Visualization of PRPP synthetase by negative staining with uranyl acetate and electron microscopy revealed fields of very asymmetric molecules, the dimensions of which corresponded to the M = 160,000 form. Dimers and higher aggregates of this unit were also seen. An unusual model, in which the five subunits are asymmetrically arranged, accounts very well for the electron microscopic appearance of the enzyme. The tendency of the enzyme to aggregate is viewed as a consequence of the unsatisfied bonding regions of the fundamental asymmetric unit.  相似文献   

13.
Catabolic dehydroquinase which functions in the inducible quinic acid catabolic pathway in Neurospora crassa has been purified 8000-fold. The enzyme was purified by two methods. One used heat denaturation of contaminating proteins; the other used antibody affinity chromatography. The preparations obtained by these two methods were identical by all criteria. The purified enzyme is extremely resistant to thermal denaturation as well as denaturation 0y urea and guanidine hydrochloride at 25 degrees. It is irreversibly inactivated, although not efficiently dissociated, by sodium dodecyl sulfate and guanidine hydrochloride at 55 degrees. At pH 3.0, the enzyme is reversibly dissociated into inactive subunits. At high concentrations catabolic dehydroquinase aggregates into an inactive, high molecular weight complex. The native enzyme, which has a very high specific activity, has a molecular weight of approximately 220,000 and is composed of identical subunits of 8,000 to 12,000 molecular weight each. The native enzyme and the subunit are both asymmetric.  相似文献   

14.
The major 22S protein of the hexylene glycol-isolated mitotic apparatus has been characterized from spindle isolates and extracts of whole eggs and acetone powders of eggs from the sea urchins Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, and Arbacia punctulata. The protein is free of nucleotide, lipid, and ATPase activity. Essentially identical in amino acid composition, proteins from these species show a relatively high content of glutamic and aspartic acids and are fairly rich in hydrophobic amino acids. Optical rotatory dispersion studies indicate a helical content of about 20%, a value consistent with the proline content of the protein. The purified proteins have sedimentation rates in the range of 22-24S, diffusion constants of 2.4-2.5F, intrinsic viscosities of 3.7-4.3 ml/g, a partial specific volume of 0.74, and an average molecular weight of 880,000. Electron microscopy indicates a globular molecule with dimensions of approximately 150 by 200 A; such size and symmetry are consistent with hydrodynamic measurements. The 22S protein yields 6-7S, 9-10S, and 13-14S subunits below pH 4 or above pH 11. The 13-14S component has an estimated molecular weight of 600,000-700,000. A 5-6S particle is formed in 8 M urea or 5 M guanidine hydrochloride, while at pH 12 the 6-7S subunit is seen; each particle has a molecular weight of 230,000-240,000. In 8 M urea plus 2% mercaptoethanol or at pH 13, the molecular weight becomes 105,000-120,000; under these conditions the particle sediments at 2.5-3S and 4S, respectively. On the basis of these molecular weights, the 6-7S, 9-10S, 13-14S, and the parent 22S particle should be dimer, tetramer, hexamer, and octamer, respectively, of the 105,000-120,000 molecular weight subunit. The various subunits will reform the 22S particle when returned to neutral buffer, with the exception of the mercaptoethanol-treated urea subunit where breakage of disulfide bonds results in a polydisperse aggregate. The 22S particle itself is not susceptible to sulfhydryl reagents, implying either that the disulfide bonds are inaccessible or that they are unnecessary for maintenance of tertiary structure once the 22S particle has formed from subunits.  相似文献   

15.
A method to separate phycoerythrin 545, isolated from the cryptomonad alga, Rhodomonaslens, into two subunits has been developed. The method uses no denaturants (urea, guanidine, detergent) but relies on dissociation of the dimeric protein and subsequent aggregation of the β subunit at pH 3.0. The absorption spectra and amino acid composition of the subunits are presented. The spectra of the α subunit was red-shifted relative to β in both pH 3.0 buffer and in acidic 8.0 M urea.  相似文献   

16.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   

17.
M R Lifsics  R C Williams 《Biochemistry》1984,23(13):2866-2875
The 68 000-dalton protein from bovine neurofilaments was purified by a combination of chromatography on DEAE-cellulose and on hydroxylapatite in buffers containing 8 M urea. Although the separation of this protein from the other proteins of the neurofilament appeared to be hampered by a mixed association of the several components, a nearly homogeneous product was obtained for study. Sedimentation equilibrium experiments in buffers containing 8 M urea showed the molecule to be a monomer with a molecular weight of 70 600 +/- 2000. Circular dichroic spectra taken under the same conditions gave no evidence of residual alpha-helix. Molecular sieve chromatography in 8 M urea on controlled-pore glass showed that the molecule eluted at an unexpectedly small volume. The small elution volume did not depend significantly on protein concentration and is unlikely to be the result of intermolecular association. Rather, the monomer probably has a conformation more rigid or extended than a classical random coil. When dialyzed into 0.01 M tris(hydroxymethyl)aminomethane/1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid/0.1 mM dithioerythritol, pH 8.5, the protein does not assemble into filaments. Sedimentation velocity reveals that under these conditions it consists mainly of a 4.8S molecular species, containing few large particles; sedimentation equilibrium shows that it is composed of oligomers, the smallest present in significant concentration having a molecular weight approximately that of a trimer. Circular dichroism measurements lead to the interpretation that the molecule has refolded in this buffer into a structure that has approximately 55% alpha-helix. Assembly into filamentous particles resembling neurofilaments occurs when the protein is dialyzed against 0.1 M 2-(N-morpholino)ethane-sulfonic acid/0.1% beta-mercaptoethanol/1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid/0.17 M NaCl, pH 6.5. We suggest that the oligomeric species present in 0.01 M tris(hydroxymethyl)aminomethane may frequently be present in solubilized preparations of intermediate filaments and may represent an intermediate in the assembly process.  相似文献   

18.
Crotamine, a basic neurotoxic protein, was isolated from the venom of the Southern Brazilian rattlesnake (Crotalus durissus terrificus) by gel filtration. The isolated protein showed a single band on PAGE at pH 4.5 and 7% (w/v) gel concentration, but two or more bands at 14% gel concentration, even in the presence of 4 M urea. After reduction and carboxymethylation, however, a single band was again detected. SDS-PAGE as well as ultracentrifugal analysis of the native (NC) and of the reduced and carboxymethylated (RCC) crotamine revealed a molecular weight of 4,500-5,000 for RCC and 9,000-10,000 for NC. Both components of a two-band crotamine preparation were isolated by preparative PAGE and characterized. Their particular electrophoretic mobility was retained. Their amino acid composition. N-terminal residue, and apparent toxicity were the same as those of the original sample. It was concluded that crotamine is able to form a dimer of 9,760 Da with two identical polypeptide chains crosslinked by interchain disulfide bonds and a shape not very far from spherical, which covalently binds extra subunits of 4,880 Da each.  相似文献   

19.
The subunit structure and solution conformation of the hemocyanin of the chiton Acanthopleura granulata were investigated by light-scattering, ultracentrifugation, viscosity, absorbance, and circular dichroism methods. The molecular weight, determined by light scattering at pH 7.4 in the presence of 0.05 M Mg2+ and 0.01 M Ca2+, was (4.2 +/- 0.3) X 10(6), while those of dissociated subunits in the presence of 8.0 M urea (at pH 7.4) and at pH 10.7 were found to be 4.57 X 10(5) and 4.58 X 10(5), respectively. Circular dichroism and absorbance measurements at 222 and 346 nm indicate only minor changes in the conformation of the folded domains of the hemocyanin subunits in these dissociating solvents. As with the hemocyanins of the snails Busycon canaliculatum, Lunatia heros, and Littorina littorea, exposure to 4.0-6.0 M guanidinium chloride (GdmCl) is found to produce unfolding of the domains, resulting in much more pronounced spectral changes and a further drop in molecular weight. A Mw of 3.2 X 10(5) was obtained with Acanthopleura hemocyanin in 6.0 M GdmCl, suggesting hidden breaks in the polypeptide chains analogous to those observed with the gastropodan hemocyanins. Both urea and pH dissociation showed gradual declines in the molecular weights, consistent with a decamer-dimer-monomer scheme of subunit dissociation. The bell-shaped molecular weight profiles obtained in the pH region from 5 to 11 can be accounted for by assuming two proton-linked groups per dimer, characterized by apparent pK values of 5.5 and 9.5, and the further involvement of five to eight acidic and five to eight basic groups per monomer, having apparent pK values of 5.0 and 10.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Gonadotropin receptors with specificity, high affinity and low capacity for luteinizing hormone and human chorionic gonadotropin (hCG) have been identified in rat luteal cells. To investigate the nature of the receptor, we have employed disuccinimidyl suberate, a cross-linker noncleavable by reducing agents, and dithiobis(succinimidyl propionate), a cleavable cross-linker, to covalently cross-link the 125I-hCG . receptor complex. The molecular weight of 125I-hCG-linked receptor complex and the receptor subunit structure were determined by electrophoresis in either 10 or 4.5% acrylamide in the presence of 0.1% sodium dodecyl sulfate with or without reducing agents. Autoradiographic analysis of the 125I-hCG-linked receptor separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing condition revealed a single labeled band corresponding to Mr = 305,000 +/- 15,000. However, electrophoresis performed in the presence of 50 mM dithiothreitol and 2% beta-mercaptoethanol resulted in the appearance of four labeled bands corresponding to Mr = 105,000 +/- 4,000, 96,000 +/- 5,000, 74,000 +/- 4,000, and 62,000 +/- 4,000 concomitant with the loss of the labeled band in the Mr = 305,000 region. Further experiments demonstrated that these four labeled bands were derived from the same molecular species. In addition, the 125I-hCG-linked receptor in the absence of reducing agent was not dissociated into subunits even by treatment with strong denaturing agent (8 M urea). The appearance of the cross-linked 125I-hCG . receptor was effectively inhibited by the unlabeled beta-subunit of hCG, intact hCG, and luteinizing hormone and partially inhibited by the alpha-subunit of hCG but not by choleratoxin, gonadotropin-releasing hormone, insulin or bovine serum albumin. These data suggest that 1) the hCG/luteinizing hormone receptor is an oligomeric complex linked by disulfide bonds and 2) that under reducing conditions, the oligomeric receptor dissociates into four nonidentical subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号