首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors governing the pattern formation process in the early morphogenesis of a marine colonial hydroid, Dynamena pumila, have been studied. Two different types of morphogenesis have been distinguished. Morphogenesis of the first type goes on via changes in cell shape and cell axis orientation, while morphogenesis of the second type is based upon the active coordinated cell movements associated with cell rearrangements. It was shown that morphogenesis of both types can be considered as cascades in which any event is a consequence of the previous one. The spatial structure of each developmental stage contains information about the direction and the initial conditions of further morphogenesis. So, an "epigenetic program" of morphogenesis gradually originates in the course of development and provides the stable reproduction of spatial structures. It is reasonable to consider the activity of epigenetic factors guiding Dynamena morphogenesis (geometry/topology of an embryo, heterogeneity of an embryo spatial structure, configuration of the field of mechanical stresses of the embryo surface) as "morphomechanical programming" of morphogenesis.  相似文献   

2.
Leaf morphogenesis is a fundamental process of shoot morphogenesis, since the leaf is the basic organ of the shoot. However, leaf morphogenesis is still poorly understood, in particular in dicotyledonous plants, because of the complex nature of the development of leaves. Thus, the mechanisms regulating each process of the morphogenesis, such as leaf determination, establishment of dorsoventrality, and polarity recognition, remain unknown. Developmental genetics seems to prove the most suitable approach to such processes and should allow us to dissect the relevant developmental pathways into genetically programmed, unit processes. The techniques of developmental genetics have been applied to studes of leaf morphogenesis of model plants, such asArabidopsis thaliana andAntirrhinum majus, and have recently revealed several important steps in leaf morphogenesis. The review will focus on genetic evidence for polarities that regulate leaf morphogenesis. Hypothetical mechanisms for leaf morphogenesis will be also discussed, based on the genetic data. Receipt of the Botanical Society Award of Young Scientists, 1996.  相似文献   

3.
4.
O Slaby 《Folia morphologica》1990,38(3):293-300
The validity of von Baer's "laws" on the general and the specific in vertebrate morphogenesis (especially organogenesis) was varified. The author starts from the hypothesis that the rudiments of traits newly acquired during morphogenesis are not rigid, not immovable, during morphogenesis, but that the action of protracted stabilizing selection during the geological ages causes them to spread and pushes them back to the perfected and stabilized in adulthood, thereby shortening the recapitulation of ancestral traits, which may eventually disappear below the threshold of detectable morphogenesis. On the basis of this thesis of the dynamics of evolutionary morphogenesis (the author bases his considerations on his studies of the morphogenesis of the avian carpometacarpus and the nasal apparatus in Sauropsida), the author comes to the conclusion that these von Baer's rules presuppose rigidity and immovability of phylogenetic morphogenesis. In fact, the general and the specific in evolutionary morphogenesis (especially organogenesis) is continuously motion, the general changes to the specific and the specific to the general and both categories undergo incessant changes. Von Baer's rules are thus not generally valid, they cannot rank as laws and in many cases they do not apply to morphogenesis (especially organogenesis), particularly in the transitional phase of evolutionary morphogenesis, when the rudiments of progressive evolutionary deviations have reached the early phases of morphogenesis and recapitulation has disappeared - and the "general" has also disappeared.  相似文献   

5.
Epidermal-dermal tissue interactions regulate morphogenesis and tissue-specific keratinization of avian skin appendages. The morphogenesis of scutate scales differs from that of reticulate scales, and the keratin polypeptides of their epidermal surfaces are also different. Do the inductive cues which initiate morphogenesis of these scales also establish the tissue-specific keratin patterns of the epidermis, or does the control of tissue-specific keratinization occur at later stages of development? Unlike feathers, scutate and reticulate scales can be easily separated into their epidermal and dermal components late in development when the major events of morphogenesis have been completed and keratinization will begin. Using a common responding tissue (chorionic epithelium) in combination with scutate and reticulate scale dermises, we find that these embryonic dermises, which have completed morphogenesis, can direct tissue-specific statification and keratinization. In other words, once a scale dermis has acquired its form, through normal morphogenesis, it is no longer able to initiate morphogenesis of that scale, but it can direct tissue-specific stratification and keratinization of a foreign ectodermal epithelium, which itself has not undergone scale morphogenesis.  相似文献   

6.
Lipid synthesis during morphogenesis of Mucor racemosus.   总被引:3,自引:0,他引:3       下载免费PDF全文
Lipid synthesis increases coordinately with protein and RNA synthesis during morphogenesis of Mucor racemosus. The lipid synthesis inhibitor cerulenin can completely block morphogenesis under conditions in which cell growth continues. An increase in phospholipid turnover may be an important correlate to morphogenesis of Mucor spp., especially the turnover of phosphotidyl inositol and phosphatidyl ethanolamine. The increase in ornithine decarboxylase, which occurs during morphogenesis, is inhibited by the addition of cerulenin.  相似文献   

7.
I discuss the possibility of examining pattern formation and morphogenesis in plants in terms of the concept of positional information. Experiments performed on shoot, floral and root apices are interpreted in terms of the theory presented. A model for floral morphogenesis and the interaction of phyllotaxis and shoot morphogenesis is also presented. Finally, some genetic abnormalities of floral morphogenesis are discussed in terms of the main theme of the study.  相似文献   

8.
The evidence supporting the idea that microfilament-mediatedcell shape changes produce morphogenetic movements of the salivaryepithelium is reviewed. The correlations between microfilamentsand morphogenesis and microtubules and morphogenesis, as revealedby experiments with cytochalasin B and colchicine respectively,are compared and contrasted. On the basis of a correlation betweenmicrofilament integrity and epithelial morphogenesis, and anactin-like nature of microfilaments to bind heavy meromyosin,it is proposed that microfilament contraction is required forcleft formation in the epithelium. Several ways in which microfilamentactivity might be regulated during morphogenesis are discussedin the framework of experiments that may comment on such regulation.  相似文献   

9.
The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95.  相似文献   

10.
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin–catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.  相似文献   

11.
A number of recent publications have assessed the outcome on leaf development of targeted manipulation of cell proliferation. The results of these investigations have awakened interest in the long-standing debate in plant biology on the precise role of cell division in morphogenesis. Does cell proliferation drive morphogenesis (cell theory) or is it subservient to a mechanism which acts at the whole organ level to regulate morphogenesis (organismal theory)? In this review, the central role of growth processes (distinct from cell proliferation) in morphogenesis is highlighted and the limitations in our understanding of the basic mechanisms of plant growth control are highlighted. Finally, an attempt is made to demonstrate how sequential local co-ordination of growth might provide an interpretation of some of the recent observations on cell proliferation and leaf morphogenesis.  相似文献   

12.
In these laboratory exercises, developed for a sophomore/junior-level undergraduate course in Developmental Biology, students explore the processes of differentiation and morphogenesis in sea urchin embryos by monitoring the spatio-temporal expression pattern of the endoderm marker, alkaline phosphatase. Once students have determined the normal alkaline phosphatase expression pattern, they are asked to treat sea urchin embryos in some way that perturbs normal morphogenesis. Their task is to discover whether the chosen treatment perturbs both morphogenesis and differentiation of the gut or only morphogenesis. The ease with which sea urchin embryos can be cultured and manipulated provide the Developmental Biology instructor with a powerful system for inviting students to explore questions regarding differentiation and morphogenesis.  相似文献   

13.
Fleming AJ 《Planta》2002,216(1):17-22
Whether cell division is a driving force in plant morphogenesis has long been debated. In this review, the evidence for the existence of cell division-dependent and cell division-independent mechanisms of plant morphogenesis is discussed. The potential mechanisms themselves are then analysed, as is our understanding of the regulation of these mechanisms and how they are integrated into development, with particular emphasis on data arising from the investigation of leaf morphogenesis. The analysis indicates the existence of both cell division-dependent and cell division-independent mechanisms in leaf morphogenesis and highlights the importance of future investigations to unravel the co-ordination of these mechanisms.  相似文献   

14.
In organ cultures of lung rudiments from 11-day mouse embryos, it was found that addition of sucrose to the culture medium stimulated branching morphogenesis and reduced lumen distension. Two possible roles of sucrose were postulated: one as a nutrient and another as a generator of osmotic pressure inducing osmosis of water from the lumen fluid to the culture medium across a simple columnar epithelial cell layer. To assess which was the case, branching morphogenesis was investigated in lung rudiments cultured in medium in which osmotic pressure was increased by the addition of lactose or NaCl rather than sucrose: similar acceleration of branching was observed in both. In another experiment, lumen fluid of cultured lung rudiments was mechanically drained each day, and significantly stimulated branching morphogenesis was observed even when sucrose was not added to the culture medium. Heparin is known to induce abnormal lumen distension and inhibits branching morphogenesis. Heparin-induced abnormal morphogenesis was prevented either by the addition of sucrose to the culture medium or by the mechanical drainage of lumen fluid. These results suggest that lumen distension caused by the accumulation of lumen fluid disrupts lung branching morphogenesis in vitro, even when the mechanism of branching morphogenesis is intact.  相似文献   

15.
The involvement of kinesin motor proteins in both cell-tip growth and cell-shape determination has been well characterized in various organisms. However, the functions of kinesins during cell morphogenesis in higher plants remain largely unknown. In the current study, we demonstrate that an armadillo repeat-containing kinesin-related protein, ARMADILLO REPEAT KINESIN1 (ARK1), is involved in root-hair morphogenesis. Microtubule polymers are more abundant in ark1 null allele root hairs, but analysis shows that these extra microtubules are concentrated in the endoplasm, and not in the cortical array, suggesting that ARK1 regulates tip growth by limiting the assembly and distribution of endoplasmic microtubules. The ARK1 gene has two homologues in the Arabidopsis genome, ARK2 and ARK3, and our results show that ARK2 is involved in root-cell morphogenesis. We further reveal that a NIMA-related protein kinase, NEK6, binds to the ARK family proteins and has pleiotropic effects on epidermal-cell morphogenesis, suggesting that NEK6 is involved in cell morphogenesis in Arabidopsis via microtubule functions associated with these armadillo repeat-containing kinesins. We discuss the function of NIMA-related protein kinases and armadillo repeat-containing kinesins in the cell morphogenesis of eukaryotes.  相似文献   

16.
以百合小鳞茎离体发生为实验系统,研究了鳞片(外植体)内多胺和多胺氧化酶活性的变化与小鳞茎发生之间的相关性。随着细胞脱分化、愈伤组织形成、小鳞茎发生等过程,内源腐胺、亚精胺和精胺的含量均失上升后下降,变化曲线为“钟形”,其含量达最高峰的时间为肉眼可见小鳞茎出现之前。多胺氧化酶活性在小鳞茎发生初期逐渐下降,6d后开始上升,并在小鳞茎突起时达最大值。由于内源多胺水平和多胺氧化酶活性的变化与小鳞茎发生有密切关系,可作为这一形态发生过程的生化指示。  相似文献   

17.
粘细菌的多细胞形态发生及其分子调控   总被引:13,自引:0,他引:13  
粘细菌的多细胞形态发生是粘细菌细胞社会性行为的主要表现.包括细胞有序聚集、细胞自溶、子实体发育和粘孢子的分化形成等.粘细菌的形态发生过程涉及复杂的信号系统和调控,与真核生物具有较大的相似性.是研究原核生物细胞分化发育以及生物进化的重要模式材料.  相似文献   

18.
Islets of Langerhans are microorgans scattered throughout the pancreas, and are responsible for synthesizing and secreting pancreatic hormones. While progress has recently been made concerning cell differentiation of the islets of Langerhans, the mechanism controlling islet morphogenesis is not known. It is thought that these islets are formed by mature cell association, first differentiating in the primitive pancreatic epithelium, then migrating in the extracellular matrix, and finally associating into islets of Langerhans. This mechanism suggests that the extracellular matrix has to be degraded for proper islet morphogenesis. We demonstrated in the present study that during rat pancreatic development, matrix metalloproteinase 2 (MMP-2) is activated in vivo between E17 and E19 when islet morphogenesis occurs. We next demonstrated that when E12.5 pancreatic epithelia develop in vitro, MMP-2 is activated in an in vitro model that recapitulates endocrine pancreas development (Miralles, F., P. Czernichow, and R. Scharfmann. 1998. Development. 125: 1017–1024). On the other hand, islet morphogenesis was impaired when MMP-2 activity was inhibited. We next demonstrated that exogenous TGF-β1 positively controls both islet morphogenesis and MMP-2 activity. Finally, we demonstrated that both islet morphogenesis and MMP-2 activation were abolished in the presence of a pan-specific TGF-β neutralizing antibody. Taken together, these observations demonstrate that in vitro, TGF-β is a key activator of pancreatic MMP-2, and that MMP-2 activity is necessary for islet morphogenesis.  相似文献   

19.
A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis.  相似文献   

20.
Mutations in WNT effector genes perturb hair follicle morphogenesis, suggesting key roles for WNT proteins in this process. We show that expression of Wnts 10b and 10a is upregulated in placodes at the onset of follicle morphogenesis and in postnatal hair follicles beginning a new cycle of hair growth. The expression of additional Wnt genes is observed in follicles at later stages of differentiation. Among these, we find that Wnt5a is expressed in the developing dermal condensate of wild type but not Sonic hedgehog (Shh)-null embryos, indicating that Wnt5a is a target of SHH in hair follicle morphogenesis. These results identify candidates for several key follicular signals and suggest that WNT and SHH signaling pathways interact to regulate hair follicle morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号