首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Polypeptide-metal cluster connectivities in Cd(II) GAL4   总被引:3,自引:0,他引:3  
Two-dimensional 1H-113Cd correlation NMR spectra have been used to determine the polypeptide/metal cluster connectivities in Cd(II) GAL4. The results show that the protein contains a two metal ion cluster where Cys-11 and Cys-28 are the bridging ligands.  相似文献   

5.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
9.
10.
11.
12.
Specific DNA binding of GAL4, a positive regulatory protein of yeast   总被引:173,自引:0,他引:173  
E Giniger  S M Varnum  M Ptashne 《Cell》1985,40(4):767-774
  相似文献   

13.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

14.
The three-dimensional structure of [(113)Cd7]-metallothionein-A (MTA) of the sea urchin Strongylocentrotus purpuratus was determined by homonuclear(1)H NMR experiments and heteronuclear [(1)H, (113)Cd]-correlation spectroscopy. MTA is composed of two globular domains, an N-terminal four-metal domain of the amino acid residues 1 to 36 and a Cd4Cys11cluster, and a C-terminal three-metal domain including the amino acid residues 37 to 65 and a Cd3Cys9cluster. The structure resembles the known mammalian and crustacean metallothioneins, but has a significantly different connectivity pattern of the Cys-metal co-ordination bonds and concomitantly contains novel local folds of some polypeptide backbone segments. These differences can be related to variations of the Cys sequence positions and thus emphasize the special role of the cysteine residues in defining the structure of metallothioneins, both on the level of the domain architecture and the topology of the metal-thiolate clusters.  相似文献   

15.
Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia. The GCM protein contains the functional domain that is essential for recognition of the upstream sequence of the repo gene. In the DNA-binding region of this GCM protein, there is a cysteine-rich region with which divalent metal ions such as Zn(2+) must bind and other proteins belonging to the GCM family have a corresponding region. To obtain a more detailed insight into the structural and functional features of this DNA-binding region, we have determined the minimal DNA-binding domain and obtained inductively coupled plasma atomic emission spectra and (1)H-(15)N, (1)H-(15)N-(13)C and (113)Cd(2+) NMR spectra, with or without its specific DNA molecule. Considering the results, it was concluded that the minimal DNA-binding domain includes two Zn(2+)-binding sites, one of which is adjacent to the interface for DNA binding. Systematic mutational analyses of the conserved cysteine residues in the minimal DNA-binding domain revealed that one Zn(2+)-binding site is indispensable for stabilization of the higher order structure of this DNA-binding domain, but that the other is not.  相似文献   

16.
17.
18.
Backbone amide proton exchange rates in the DNA-binding domain of GAL4 have been determined using 1H-15N heteronuclear correlation NMR spectroscopy. Three forms of the protein were studied-the native Zn-containing protein, the Cd-substituted protein, and a Zn-GAL4/DNA complex. Exchange rates in the Zn-containing protein are significantly slower than in the Cd-substituted protein. This shows that Cd-substituted GAL4 is destabilized relative to the native Zn-containing protein. Upon DNA binding, global retardation of amide proton exchange with solvent was observed, indicating that internal fluctuations of the DNA-recognition module are significantly reduced by the presence of DNA. In all forms of the protein, the internal dyad symmetry of the DNA-recognition module of GAL4 is reflected by the backbone amide proton exchange rates.  相似文献   

19.
20.
Metallothioneins constitute a class of ubiquitously occurring low molecular mass proteins (6–7 kDa) possessing two cysteine thiolate-based metal clusters usually formed by the preferential binding of d10 metal ions such as Zn II and Cd II. The three-dimensional solution structure of mammalian proteins has been determined by two-dimensional NMR spectroscopy of 113Cd7-metallothionein. The structure shows two protein domains encompassing the M3(CysS)9- and M4(CysS)11-cluster with each metal ion being tetrahedrally coordinated by thiolate ligands. The application of 113Cd NMR proved to be indispensable in the structural studies of metallothioneins. Thus, both homonuclear 113Cd decoupling studies and 113Cd-113Cd COSY of 113Cd7-metallothionein established the existence of two metal-thiolate clusters in this protein. The identification of sequence specific cysteine-cadmium coordinative bonds came from heteronuclear 113Cd-1H COSY experiments. Independently, the 113Cd NMR characterization of the intermediate metal-protein complexes, leading to the cluster structure in 113Cd7- metallothionein, revealed a stepwise cluster formation process with the Cd4(CysS)11-cluster being formed first. The recent demonstration of a Karplus-like dependence between the heteronuclear 3J(113 Cd,1 H) coupling constants for the cysteine C protons and the H-C: -S -Cd dihedral angles should allow to derive the geometry of the Cd-(S-Cys) centers in various metallothioneins and related metalloproteins. A possible application of 113Cd NMR to the study of metallothioneins in the environment is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号