首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Han JO  Steen SB  Roth DB 《Molecular cell》1999,3(3):331-338
V(D)J recombination, normally an intramolecular process, assembles immunoglobulin and T cell receptor genes from V, D, and J coding segments. Oncogenic chromosome translocations can result from aberrant rearrangements, such as occur in intermolecular V(D)J recombination. How this is normally prevented remains unclear; DNA cleavage, joining, or both could be impaired when the recombination signal sequences (RSS) are located in trans, on separate DNA molecules. Here, we show that both trans cleavage and joining of signal ends occur efficiently in vivo. Unexpectedly, trans joining of coding ends is severely impaired (100-to 1000-fold), indicating that protection against intermolecular V(D)J recombination is established at the joining step. These findings suggest a novel surveillance mechanism for eliminating cells containing aberrant V(D)J rearrangements.  相似文献   

2.
V(D)J recombination and class switch recombination are the two DNA rearrangement events used to diversify the mouse and human antibody repertoires. While their double strand breaks (DSBs) are initiated by different mechanisms, both processes use non-homologous end joining (NHEJ) in the repair phase. DNA mismatch repair elements (MSH2/MSH6) have been implicated in the repair of class switch junctions as well as other DNA DSBs that proceed through NHEJ. MSH2 has also been implicated in the regulation of factors such as ATM and the MRN (Mre11, Rad50, Nbs1) complex, which are involved in V(D)J recombination. These findings led us to examine the role of MSH2 in V(D)J repair. Using MSH2-/- and MSH2+/+ mice and cell lines, we show here that all pathways involving MSH2 are dispensable for the generation of an intact pre-immune repertoire by V(D)J recombination. In contrast to switch junctions and other DSBs, the usage of terminal homology in V(D)J junctions is not influenced by MSH2. Thus, whether the repair complex for V(D)J recombination is of a canonical NHEJ type or a separate microhomology-mediated-end joining (MMEJ) type, it does not involve MSH2. This highlights a distinction between the repair of V(D)J recombination and other NHEJ reactions.  相似文献   

3.
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12- and 23-RSSs, form a complex with the protein products of recombination activating genes, RAG1 and RAG2. DNaseI footprinting demonstrates that the interaction of RAG proteins with substrate RSS DNA is not just limited to the signal region but involves the coding sequence as well. Joining mutants of RAG1 and RAG2 demonstrate impaired interactions with the coding region in both pre- and postcleavage type complexes. A possible role of this RAG coding region interaction is discussed in the context of V(D)J recombination.  相似文献   

4.
Unintended DNA rearrangements in a differentiating lymphocyte can have severe, oncogenic consequences, but the mechanisms for avoiding pathogenic outcomes in V(D)J recombination are not well understood. The first level at which fidelity is instituted is in discrimination by the recombination proteins between authentic and inauthentic recombination signal sequences. Nevertheless, this discrimination is not absolute and cannot fully eliminate targeting errors. To learn more about the basis of specificity during V(D)J recombination, we have investigated whether it is possible for the recombination machinery to detect an inaccurately targeted sequence subsequent to cleavage. These studies indicate that even postcleavage steps in V(D)J recombination are sequence specific and that noncanonical sequences will not efficiently support the resolution of recombination intermediates in vivo. Accordingly, interventions after a mistargeting event conceivably occur at a late stage in the joining process and the likelihood may well be crucial to enforcing fidelity during antigen receptor gene rearrangement.  相似文献   

5.
Cutting and closing without recombination in V(D)J joining.   总被引:19,自引:0,他引:19       下载免费PDF全文
S M Lewis  J E Hesse 《The EMBO journal》1991,10(12):3631-3639
Open and shut junctions are rare (V(D)J joining products in which site-specific recognition, cleavage and re-ligation of joining signals has been uncoupled from recombination. Here, we investigate the relationship of opening and shutting to recombination in two ways. First, we have tested a series of substrates containing one or two joining signals in an in vivo assay. Opening and shutting can be readily observed in substrates that have only one consensus joining signal. Thus, unlike recombination, the majority of open and shut events do not require interactions between two canonical joining signals. Next we examined two-signal substrates to investigate the effect of signal proximity on the frequency of dual open and shut events. These experiments indicate that at least some of the time opening and shutting can be a two-signal transaction. Together these results point to two mechanistically related, but distinct origins for open and shut joining events. In one case, cutting and closing may occur without interaction between two signals. In the other, we suggest that interaction of a canonical signal with 'cryptic' signal-like elements whose sequence is extensively diverged from canonical signals, may bias the V(D)J recombination machinery towards opening and shutting rather than recombination. Open and shut operations could in this way provide a means whereby mistakes in target recognition by the V(D)J recombination machinery produce a non-recombinant outcome, avoiding deleterious chromosomal rearrangements in lymphoid tissues.  相似文献   

6.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

7.
Raghavan SC  Tong J  Lieber MR 《DNA Repair》2006,5(2):278-285
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.  相似文献   

8.
Analysis of regions of RAG-2 important for V(D)J recombination.   总被引:8,自引:1,他引:7       下载免费PDF全文
The recombinase activating genes RAG-1 and RAG-2 operate together to activate V(D)J recombination, and thus play an essential role in the generation of immune system diversity. As a first step in understanding the function of the RAG-2 protein, we have tested a series of deletion and insertion mutations for their ability to induce V(D)J joining of a variety of model substrates. Mutants were assayed for their ability to induce deletional and inversional V(D)J joining, thereby testing their proficiency at forming both signal and coding joints, and, in some cases, for their ability to carry out recombination of both extrachromosomal and integrated recombination substrates. All these reactions were affected similarly by any one mutation. Although the RAG-2 protein shows extensive evolutionary conservation across its length, we found that the carboxy-terminal portion of RAG-2, including an acidic region, is dispensable for all forms of recombination tested. In contrast, all mutations we created in the N-terminal region severely decreased recombination. Thus, the core active region required for V(D)J recombination is confined to the first three-quarters of the RAG-2 protein.  相似文献   

9.
P nucleotides in V(D)J recombination: a fine-structure analysis.   总被引:7,自引:12,他引:7       下载免费PDF全文
Antigen receptor genes acquire junctional inserts upon assembly from their component, germ line-encoded V, D, and J segments. Inserts are generally of random sequence, but a small number of V-D, D-J, or V-J junctions are exceptional. In such junctions, one or two added base pairs inversely repeat the sequence of the abutting germ line DNA. (For example, a gene segment ending AG might acquire an insert beginning with the residues CT upon joining). It has been proposed that the nonrandom residues, termed "P nucleotides," are a consequence of an obligatory end-modification step in V(D)J recombination. P insertion in normal, unselected V(D)J joining products, however, has not been rigorously established. Here, we use an experimentally manipulable system, isolated from immune selection of any kind, to examine the fine structure of V(D)J junctions formed in wild-type lymphoid cells. Our results, according to statistical tests, show the following, (i) The frequency of P insertion is influenced by the DNA sequence of the joined ends. (ii) P inserts may be longer than two residues in length. (iii) P inserts are associated with coding ends only. Additionally, a systematic survey of published P nucleotide data shows no evidence for variation in P insertion as a function of genetic locus and ontogeny. Together, these analyses establish the generality of the P nucleotide pattern within inserts but do not fully support previous conjectures as to their origin and centrality in the joining reaction.  相似文献   

10.
Ku, a heterodimer of 70- and 86-kDa subunits, serves as the DNA binding component of the DNA-dependent protein kinase (DNA-PK). Cells deficient for the 86-kDa subunit of Ku (Ku86-deficient cells) lack Ku DNA end-binding activity and are severely defective for formation of the standard V(D)J recombination products, i.e., signal and coding joints. It has been widely hypothesized that Ku is required for protection of broken DNA ends generated during V(D)J recombination. Here we report the first analysis of V(D)J recombination intermediates in a Ku-deficient cell line. We find that full-length, ligatable signal ends are abundant in these cells. These data show that Ku86 is not required for the protection or stabilization of signal ends, suggesting that other proteins may perform this function. The presence of high levels of signal ends in Ku-deficient cells prompted us to investigate whether these ends could participate in joining reactions. We show that nonstandard V(D)J recombination products (hybrid joints), which involve joining a signal end to a coding end, form with similar efficiencies in Ku-deficient and wild-type fibroblasts. These data support the surprising conclusion that Ku is not required for some types of V(D)J joining events. We propose a novel RAG-mediated joining mechanism, analogous to disintegration reactions performed by retroviral integrases, to explain how formation of hybrid joints can bypass the requirement for Ku and DNA-PK.  相似文献   

11.
Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.  相似文献   

12.
Strand breaks without DNA rearrangement in V (D)J recombination.   总被引:11,自引:6,他引:5       下载免费PDF全文
Somatic gene rearrangement of immunoglobulin and T-cell receptor genes [V(D)J recombination] is mediated by pairs of specific DNA sequence motifs termed signal sequences. In experiments described here, retroviral vectors containing V(D)J rearrangement cassettes in which the signal sequences had been altered were introduced into wild-type and scid (severe combined immune deficiency) pre-B cells and used to define intermediates in the V(D)J recombination pathway. The scid mutation has previously been shown to deleteriously affect the V(D)J recombination process. Cassettes containing a point mutation in one of the two signal sequences inhibited rearrangement in wild-type cells. In contrast, scid cells continued to rearrange these cassettes with the characteristic scid deletional phenotype. Using these mutated templates, we identified junctional modifications at the wild-type signal sequences that had arisen from strand breaks which were not associated with overall V(D)J rearrangements. Neither cell type was able to rearrange constructs which contained only a single, nonmutated, signal sequence. In addition, scid and wild-type cell lines harboring cassettes with mutations in both signal sequences did not undergo rearrangement, suggesting that at least one functional signal sequence was required for all types of V(D)J recombination events. Analysis of these signal sequence mutations has provided insights into intermediates in the V(D)J rearrangement pathway in wild-type and scid pre-B cells.  相似文献   

13.
In the murine T cell receptor delta locus, V(D)J recombination events frequently involve the D2 and J1 elements. Here we report the presence of double-strand breaks at recombination signals flanking D2 in approximately 2% of thymus DNA. An excised linear species containing the sequences between D2 and J1 and a circular product of the joining of D2 and J1 recombination signals were also found. Although broken molecules with signal ends were detected, no species with coding ends could be identified. Observation of these broken molecules in thymus, but not in liver or spleen, provides the first direct evidence for an association between specific cleavage of chromosomal DNA and recombination in mammalian cells, and supports a breakage-reunion model of V(D)J recombination.  相似文献   

14.
J E Hesse  M R Lieber  M Gellert  K Mizuuchi 《Cell》1987,49(6):775-783
Sequences encoding immunoglobulin variable domains are known to be assembled from variable (V), diversity (D), and joining (J) segments by site-specific recombination. We present a sensitive and rapid assay for V-(D)-J recombination that uses plasmid DNA transiently introduced into transformed pre-B cells, and demonstrates that the recombination is independent of any unique chromosomal context. Sequences sufficient to constitute recombination sites are contained within the 84 and 42 bp flanking, respectively, the murine J kappa 1 and V kappa L8 segments, which include the known heptamer-nonamer V-(D)-J joining signals. Deletion and inversion occur at comparable frequencies. Thus, V-(D)-J recombination may be relatively insensitive to the topological arrangement of sites, and events at the two novel junctions produced by the reaction may be coupled.  相似文献   

15.
The process of assembling immunoglobulin and T-cell receptor genes from variable (V), diversity (D), and joining (J) gene segments, called V(D)J recombination, involves the introduction of DNA breaks at recombination signals. DNA cleavage is catalyzed by RAG-1 and RAG-2 in two chemical steps: first-strand nicking, followed by hairpin formation via direct transesterification. In vitro, these reactions minimally proceed in discrete protein-DNA complexes containing dimeric RAG-1 and one or two RAG-2 monomers bound to a single recombination signal sequence. Recently, a DDE triad of carboxylate residues essential for catalysis was identified in RAG-1. This catalytic triad resembles the DDE motif often associated with transposase and retroviral integrase active sites. To investigate which RAG-1 subunit contributes the residues of the DDE triad to the recombinase active site, cleavage of intact or prenicked DNA substrates was analyzed in situ in complexes containing RAG-2 and a RAG-1 heterodimer that carried an active-site mutation targeted to the same or opposite RAG-1 subunit mutated to be incompetent for DNA binding. The results show that the DDE triad is contributed to a single recombinase active site, which catalyzes the nicking and transesterification steps of V(D)J recombination by a single RAG-1 subunit opposite the one bound to the nonamer of the recombination signal undergoing cleavage (cleavage in trans). The implications of a trans cleavage mode observed in these complexes on the organization of the V(D)J synaptic complex are discussed.  相似文献   

16.
The RAG proteins cleave at V(D)J recombination signal sequences then form a postcleavage complex with the broken ends. The role of this complex in end processing and joining, if any, is undefined. We have identified two RAG1 mutants proficient for DNA cleavage but severely defective for coding and signal joint formation, providing direct evidence that RAG1 is critical for joining in vivo and strongly suggesting that the postcleavage complex is important in end joining. We have also identified a RAG1 mutant that is severely defective for both hairpin opening in vitro and coding joint formation in vivo. These data suggest that the hairpin opening activity of the RAG proteins plays an important physiological role in V(D)J recombination.  相似文献   

17.
The lambda-light-chain and lambda-heavy-chain variable-region genes of an anti-Rh(D) (Rh, Rhesus; D, heavy-chain diversity region) human monoclonal antibody secreted by lymphocytes transformed by the Epstein-Barr virus have been cloned and sequenced. Sequence comparison of the anti-Rh(D)mAb lambda-chain variable region with those of the other available human lambda chains revealed that it belonged to the human V lambda I (V lambda, variable region of lambda chain) subgroup. The greatest sequence similarity (80%) was observed with that of another anti-Rh antibody lambda-chain directed against the Rh(c) antigen. For the VH (VH, variable region of heavy chain) sequence, the highest similarity (86%) was observed with the germline VHG3 gene which belongs to the VHI subgroup. The expressed DH sequence of the anti-Rh(D) antibody is also of germline origin and complementarity-determining region 3 is thus produced by VH-DH and DH-JH (J, joining region) joining without recombination of multiple DH gene segments.  相似文献   

18.
Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased. Moreover, XLF-deficient pro-B lines, while IR-sensitive, perform V(D)J recombination at nearly wild-type levels. Correspondingly, XLF/p53-double-deficient mice are not markedly prone to the pro-B lymphomas that occur in previously characterized C-NHEJ/p53-deficient mice; however, like other C-NHEJ/p53-deficient mice, they still develop medulloblastomas. Despite nearly normal V(D)J recombination in developing B cells, XLF-deficient mature B cells are moderately defective for immunoglobulin heavy-chain class switch recombination. Together, our results implicate XLF as a C-NHEJ factor but also indicate that developing mouse lymphocytes harbor cell-type-specific factors/pathways that compensate for the absence of XLF function during V(D)J recombination.  相似文献   

19.
Variable (diversity) joining [V(D)J] recombination of immune gene loci proceeds in an ordered manner with D to J portions recombining first and then an upstream V joins that recombinant. We present evidence that the non-core domain of recombination activating gene (RAG) protein 2 is involved in the regulation of recombinatorial order. In mice lacking the non-core domain of RAG2 the ordered rearrangement is disturbed and direct V to D rearrangements are 10- to 1000-times increased in tri-partite immune gene loci. Some forms of inter-chromosomal translocations between TCRbeta and TCRdelta D gene segments are also increased in the core RAG2 animals as compared with their wild-type (WT) counterparts. In addition, the concise use of proper recombination signal sequences (RSSs) appears to be disturbed in the core RAG2 mice as compared with WT RAG2 animals.  相似文献   

20.
We recently described the incidence of a SCID disease in a litter of Jack Russell terriers. In this study, we show that the molecular defect in these animals is faulty V(D)J recombination. Furthermore, we document a complete deficit in DNA-dependent protein kinase activity that can be explained by a marked diminution in the expression of the catalytic subunit DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We conclude that as is the case in C.B-17 SCID mice and in Arabian SCID foals, the defective factor in these SCID puppies is DNA-PKcs. In mice, it has been clearly established that DNA-PKcs deficiency produces an incomplete block in V(D)J recombination, resulting in "leaky" coding joint formation and only a modest defect in signal end ligation. In contrast, DNA-PKcs deficiency in horses profoundly blocks both coding and signal end joining. Here, we show that although DNA-PKcs deficiency in canine lymphocytes results in a block in both coding and signal end joining, the deficit in both is intermediate between that seen in SCID mice and SCID foals. These data demonstrate significant species variation in the absolute necessity for DNA-PKcs during V(D)J recombination. Furthermore, the severity of the V(D)J recombination deficits in these three examples of genetic DNA-PKcs deficiency inversely correlates with the relative DNA-PK enzymatic activity expressed in normal fibroblasts derived from these three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号