首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.  相似文献   

2.
Extracellular regulated kinase (Erk) 5 is a member of the mitogen activated protein (MAP) kinase family that has been implicated in both cell proliferation and survival. In the present study, we found that stimulation with platelet-derived growth factor (PDGF)-BB leads to a transient activation of Erk5, which was shown to be dependent on recruitment of both Src kinases and the tyrosine phosphatase Shp2 to the activated PDGF receptor β (PDGFRβ). We could also demonstrate that Shp2 docking to the receptor is critical for Src kinase activation, suggesting that Shp2 may contribute to Erk5 activation through its involvement in Src kinase activation. Under control conditions, PDGF-BB promoted a sustained Akt phosphorylation. However, reduction of the expression of Erk5 by siRNA resulted in only a transient Akt phosphorylation, and an inability of PDGF-BB to suppress caspase 3 activation and inhibit apoptotic nuclear morphological changes such as condensed or fragmented chromatin under serum-free conditions.  相似文献   

3.
4.
MAP kinase phosphatase-3 (MKP3), also known as DUSP6 or Pyst1, is a dual specificity phosphatase considered to selectively dephosphorylate extracellular-signal-regulated kinase 1/2 (Erk1/2). Here, we report that in NIH3T3 cells, MKP3 is induced in response to platelet-derived growth factor (PDGF)-BB treatment in an Erk1/2- and phosphatidylinositol 3-kinase (PI3K)-dependent manner, but independently of Erk5 expression. Silencing of MKP3 expression did not affect PDGF-BB-induced Erk1/2 or p38 phosphorylation; however, their basal level of phosphorylation was elevated. Furthermore, we found that PDGF-BB-mediated activation of Erk5 and Akt was enhanced when the MKP3 expression was reduced. Interfering with Mek1/2 or PI3K using the inhibitors CI-1040 and LY-294002, respectively, inhibited PDGF-BB-induced MKP3 expression. Functionally, we found that MKP3 silencing did not affect cell proliferation, but enhanced the chemotactic response toward PDGF-BB. Although both Akt and Erk5 have been linked to increased cell survival, downregulation of MKP3 did not alter the ability of PDGF-BB to protect NIH3T3 cells from starvation-induced apoptosis. However, we observed an increased apoptosis in untreated cells with reduced MKP3 expression. In summary, our data indicate that there is negative cross-talk between Erk1/2 and Erk5 that involves regulation of MKP3 expression, and that PI3K in addition to promoting Akt phosphorylation also negatively modulates Akt, through MKP3 expression.  相似文献   

5.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

6.
Chiu D  Ma K  Scott A  Duronio V 《The FEBS journal》2005,272(17):4372-4384
We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose-response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival.  相似文献   

7.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

8.
Hemin has been reported to be protective in the pathological process, but its protective mechanisms have not been precisely defined. Hemin could induce Erk1/2 phosphorylation in astrocyte. Erk1/2 phosphorylation has been proved to be involved in many growth signals cellular transduction. However, little study has been conducted as to the relationship between hemin and Erk1/2 activation in human umbilical vein endothelial cells (HUVECs). The present study aimed to investigate the relationship between hemin and Erk1/2 phosphorylation in HUVECs. The results showed that low concentration of hemin induced and sustained phosphorylation of Erk1/2 for a long time. The HO inhibitor protoporphyrin IX zinc (II) abrogated phosphorylation of Erk1/2 induced by hemin. Biliverdin, one of the metabolites of hemin, obviously induced the Erk1/2 phosphorylation in HUVECs. Both hemin and biliverdin promoted HUVEC cell growth. The results strongly suggested that hemin could induce and sustain Erk1/2 phosphorylation in HUVECs by way of HO-1 induction and biliverdin produced from HO-1 catalysing hemin degradation.  相似文献   

9.
HGF and phorbol ester induce the scattering of HepG2 cells. Recently, we have reported that the motility and morphological responses that accompany this process require the activation of Erk1/Erk2 MAP kinases, and phosphatidylinositol 3-kinase contributes to the activation of Erk1/Erk2 in HGF-induced cells. The cell scattering-associated appearance of a high-M(r) (>300 kDa) protein pair has also been observed, and has been proven to be a sensitive marker of the intensity of Erk1/Erk2 activation. Our present study demonstrates that in HGF-induced cells protein kinase C and phosphatidylinositol 3-kinase regulate oppositely the expression of these cell scattering-associated proteins. While in phorbol ester-treated cells the sustained activation of protein kinase C is essential for this expression, in HGF-induced cells the inhibition of protein kinase C with bisindolylmaleimide I stimulates the expression. Protein kinase C reduces the HGF-induced phosphorylation of Erk1/Erk2, and in this way it can limit the intensity of Erk1/Erk2-dependent gene-expression  相似文献   

10.
Chen N  Shao W  Lv P  Zhang S  Chen Y  Zhu L  Lu Y  Shen Y 《Free radical research》2007,41(9):990-996
Hemin has been reported to be protective in the pathological process, but its protective mechanisms have not been precisely defined. Hemin could induce Erk1/2 phosphorylation in astrocyte. Erk1/2 phosphorylation has been proved to be involved in many growth signals cellular transduction. However, little study has been conducted as to the relationship between hemin and Erk1/2 activation in human umbilical vein endothelial cells (HUVECs). The present study aimed to investigate the relationship between hemin and Erk1/2 phosphorylation in HUVECs. The results showed that low concentration of hemin induced and sustained phosphorylation of Erk1/2 for a long time. The HO inhibitor protoporphyrin IX zinc (II) abrogated phosphorylation of Erk1/2 induced by hemin. Biliverdin, one of the metabolites of hemin, obviously induced the Erk1/2 phosphorylation in HUVECs. Both hemin and biliverdin promoted HUVEC cell growth. The results strongly suggested that hemin could induce and sustain Erk1/2 phosphorylation in HUVECs by way of HO-1 induction and biliverdin produced from HO-1 catalysing hemin degradation.  相似文献   

11.
The IGF-1 receptor (IGF-1R) and MT1-MMP are synthesized as larger precursor proproteins, which require endoproteolytic activation by the proprotein convertases (PCs) furin/PC5 to gain full biological activity. The aim of this study was to investigate the contribution of PCs to IGF-1R and/or MT1-MMP activation in vascular smooth muscle cells (VSMCs) as well as VSMC proliferation/migration, which are key elements in vascular remodeling. Furin and PC5 mRNAs and proteins were found in VSMCs. Inhibition of furin-like PCs with the specific pharmacological inhibitor dec-CMK inhibited IGF-1R endoproteolytic activation. Inhibition of IGF-1R maturation abrogated IGF-induced IGF-1R autophosphorylation, PI3-kinase and MAPK induction, as well as VSMC proliferation (p<0.05 vs. controls), whereas it had no effect of PDGF-stimulated signaling pathways or cell growth. Both, IGF-1 and PDGF-BB, induced MT1-MMP expression, but only IGF-1-mediated MT1-MMP induction was inhibited by dec-CMK. Induction of MMP-2 by IGF-1 was inhibited by the PI3-kinase inhibitor wortmannin, but not by the MEK-inhibitor PD98059. Dec-CMK inhibited VSMC chemotaxis comparable to the effects of the MMP-inhibitor GM6001 (both p<0.05 vs. controls), supporting that MMPs are involved. In conclusion, this study demonstrates that targeting furin-like PCs and thus inhibiting IGF-1R activation is a novel target to inhibit IGF-1-mediated signaling and cell functions, such as IGF-1-induced MT1-MMP/MMP-2 in VSMCs.  相似文献   

12.
The mechanisms by which insulin-like growth factor 1 (IGF-1) cooperates with membrane ion transport system to modulate epithelial cell motility and proliferation remain poorly understood. Here, we investigated the role of electroneutral KCl cotransport (KCC), in IGF-1-dependent invasiveness and proliferation of cervical and ovarian cancer cells. IGF-1 increased KCC activity and mRNA expression in a dose- and time-dependent manner in parallel with the enhancement of regulatory volume decrease. IGF-1 treatment triggers phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascades leading to the activation of Akt and extracellular signal-regulated kinase1/2 (Erk1/2), respectively. The activated Erk1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways are differentially required for IGF-1-stimulated biosyn-thesis of KCC polypeptides. Specific reduction of Erk1/2 protein levels with small interference RNA abolishes IGF-1-stimulated KCC activity. Pharmacological inhibition and genetic modification of KCC activity demonstrate that KCC is necessary for IGF-1-induced cancer cell invasiveness and proliferation. IGF-1 and KCC colocalize in the surgical specimens of cervical cancer (n = 28) and ovarian cancer (n = 35), suggesting autocrine or paracrine IGF-1 stimulation of KCC production. Taken together, our results indicate that KCC activation by IGF-1 plays an important role in IGF-1 signaling to promote growth and spread of gynecological cancers.  相似文献   

13.
While some studies report that estradiol (E2) activates extracellular-signal regulated kinase (Erk1/2) in MCF-7 breast cancer cells, others report E2 does not activate this signaling pathway. This study attempted to resolve the conflicting reports by investigating experimental variables that could impact Erk1/2 activation using a high through-put assay that quantitatively assessed Erk1/2 phosphorylation. Variables tested included: cell staging and dosing regimes with and without charcoal-stripped serum, different MCF-7 cell sublines and culture densities and several E2 formulations and solvents. Levels of phosphorylated Erk1/2 were normalized to cellular protein rather than to total Erk1/2 protein because an antibody purported to recognize total Erk1/2 preferentially reacted with non-phosphorylated Erk1/2, potentially exaggerating the apparent level of Erk1/2 activation. Dosing MCF-7 cells with E2 containing small amounts of stripped serum induced Erk1/2 phosphorylation; however, this induction was largely attributed to serum factors. E2 administered in serum-free medium did not significantly alter Erk1/2 phosphorylation under any condition tested; immunocytochemistry corroborated this conclusion. While phosphatase inhibitors generally increased Erk1/2 phosphorylation, they did not impact E2-altered Erk1/2 phosphorylation. It remains important to resolve the basis of conflicting reports regarding E2-induced Erk1/2 activation due to the potential importance of this pathway on breast cancer and other processes.  相似文献   

14.
We have designed a molecule, GFB-111, that binds to platelet-derived growth factor (PDGF), prevents it from binding to its receptor tyrosine kinase, and blocks PDGF-induced receptor autophosphorylation, activation of Erk1 and Erk2 kinases, and DNA synthesis. GFB-111 is highly potent (IC50 = 250 nM) and selective for PDGF over EGF, IGF-1, aFGF, bFGF, and HRGbeta (IC50 values > 100 microM), but inhibits VEGF-induced Flk-1 tyrosine phosphorylation and Erk1/Erk2 activation with an IC50 of 10 microM. GFB-111 treatment of nude mice bearing human tumors resulted in significant inhibition of tumor growth and angiogenesis. The results demonstrate the feasibility of designing novel growth factor-binding molecules with potent anticancer and antiangiogenic activity.  相似文献   

15.
Neurofilaments (NFs) are neuron-specific intermediate filaments, and are the major cytoskeletal component in large myelinated axons. Lysine-serine-proline (KSP) repeats in the tail domains of high molecular weight NF proteins (NF-M and NF-H) are extensively phosphorylated in vivo in the axon. This phosphorylation in the tail domain has been postulated to play an important role in mediating neuron-specific properties, including axonal caliber and conduction velocity. Recent studies have shown that the mitogen-activated protein kinases (extracellular signal-regulated kinases, Erk1 and Erk2) phosphorylate KSP motifs in peptide substrates derived from the NF-M and NF-H tail domains in vitro. However, it is not clear whether activation of the mitogen activated protein (MAP) kinase pathway is able to phosphorylate these domains in vivo. To answer this question, a constitutively active form of mitogen-activated Erk activating kinase (MEK1) was cotransfected with an NF-M expression construct into NIH 3T3 cells. The activated mutant, but not the dominant negative mutant, induced phosphorylation of NF-M. In addition, it was shown that epidermal growth factor, which induces the MAP kinase cascade in NIH 3T3 cells, also activated endogenous Erk1 and Erk2 and NF-M tail domain phosphorylation in the transfected cells. These results present direct evidence that in-vivo activation of Erk1 and Erk 2 is sufficient for NF-M tail domain phosphorylation in transfected cells.  相似文献   

16.
We have previously shown that in a HEK-293 cell line that overexpresses the C1a isoform of the calcitonin receptor (C1a-HEK), calcitonin induces the tyrosine phosphorylation of the focal adhesion-associated proteins HEF1 (a p130(Cas)-like docking protein), paxillin, and focal adhesion kinase and that it also stimulates the phosphorylation and activation of Erk1 and Erk2. We report here that cell attachment to the extracellular matrix, an intact actin cytoskeleton, and c-Src are absolutely required for the calcitonin-induced phosphorylation of focal adhesion-associated proteins. In contrast to the phosphorylation of paxillin and HEF1 in cells attached to fibronectin-coated dishes, calcitonin failed to stimulate the phosphorylation of paxillin and HEF1 in suspended cells, in cells attached to poly-d-lysine-coated dishes, and in attached cells pretreated with the RGD-containing peptide GRGDS. Overexpression of wild-type c-Src increased calcitonin-induced paxillin and HEF1 phosphorylation, whereas overexpression of kinase-dead Src or Src lacking a functional SH2 domain inhibited the calcitonin-stimulated tyrosine phosphorylation of these proteins. Overexpression of Src lacking the SH3 domain did not affect the calcitonin-induced phosphorylation of paxillin and HEF1. In contrast to the regulation of paxillin and HEF1 phosphorylation, the calcitonin-induced phosphorylation of Erk1 and Erk2 did not appear to involve c-Src and was only partially dependent on cell adhesion to the extracellular matrix and an intact actin cytoskeleton. Furthermore, inhibition of Erk1 and Erk2 phosphorylation had no effect on the calcitonin-induced phosphorylation of paxillin and HEF1. Thus, in C1a-HEK cells, the calcitonin receptor is coupled to the tyrosine phosphorylation of focal adhesion-associated proteins and to Erk1/2 phosphorylation by mechanisms that are in large part independent.  相似文献   

17.
Fibroblast growth factors (FGFs) inhibit chondrocyte proliferation via the Erk MAP kinase pathway. Here, we explored the role of protein kinase C in FGF signaling in chondrocytes. Erk activity in FGF2-treated RCS (rat chondrosarcoma) chondrocytes or human primary chondrocytes was abolished by the protein kinase C inhibitor bisindolylmaleimide I (Bis I). Bis I inhibited FGF2-induced activation of MEK, Raf-1, and Ras members of Erk signaling module but not the FGF2-induced tyrosine phosphorylation of Frs2 or the kinase activity of FGFR3, demonstrating that it targets the Erk cascade immediately upstream of Ras. Indeed, Bis I abolished the FGF2-mediated association of Shp2 tyrosine phosphatase with Frs2 and Gab1 adaptor proteins necessary for proper Ras activation. We also determined which PKC isoform is involved in FGF2-mediated activation of Erk. When both conventional and novel PKCs expressed by RCS chondrocytes (PKCalpha, -gamma, -delta, and -epsilon) were down-regulated by phorbol ester, cells remained responsive to FGF2 with Erk activation, and this activation was sensitive to Bis I. Moreover, treatment with PKClambda/zeta pseudosubstrate lead to significant reduction of FGF2-mediated activation of Erk, suggesting involvement of an atypical PKC.  相似文献   

18.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

19.
Transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor, reduces the infarct size after focal cerebral ischemia in rat, but the molecular basis underlying the protection is unknown. Excitotoxicity and global inhibition of translation are acknowledged to contribute significantly to the ischemic damage. Here we studied whether TGF-alpha can rescue neurons from excitotoxicity in vitro and how it affects calcium homeostasis, protein synthesis, and the associated Akt and extracellular signal-regulated kinase 1/2 (Erk1/2) intracellular signaling pathways in mixed neuron-glia cortical cultures. We found that 100 ng/ml TGF-alpha attenuated neuronal cell death induced by a 30-min exposure to 35 microM N-methyl-D-aspartic acid (NMDA) (as it reduced lactate dehydrogenase release, propidium iodide staining, and caspase-3 activation) and decreased the elevation of intracellular Ca2+ elicited by NMDA. TGF-alpha induced a prompt and sustained phosphorylation of Erk1/2 and prevented the loss of Akt-P induced by NMDA 3 h after exposure. The protective effect of TGF-alpha was completely prevented by PD 98059, an inhibitor of the Erk1/2 pathway. Studies of incorporation of [3H]leucine into proteins showed that NMDA decreased the rate of protein synthesis, and TGF-alpha attenuated this effect. TGF-alpha stimulated the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) but did not affect eIF2 alpha, two proteins involved in translation regulation. PD 98059 abrogated the TGF-alpha effect on eIF4E. Our data demonstrate that TGF-alpha exerts a neuroprotective action against NMDA toxicity, in which Erk1/2 activation plays a key role, and suggest that the underlying mechanisms involve recovery of translation inhibition, mediated at least in part by eIF4E phosphorylation.  相似文献   

20.
Extracellular signal-regulated kinase (Erk)1/2 activity signals myeloid cell differentiation induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Previously, we reported that Erk1/2 activation (phosphorylation) induced by TPA required reactive oxygen species (ROS) as a second messenger. Here, we hypothesized that ROS generated in response to TPA inhibit Erk1/2-directed phosphatase activity, which leads to an increase phosphorylation of Erk1/2 to signal p21(WAF1/Cip1)-mediated growth arrest in ML-1 cells. Incubation of ML-1 cells with TPA resulted in a marked accumulation of phosphorylated Erk1/2, and is subsequent to H2O2 generation. Interestingly, post-TPA-treatment with N-acetylcysteine (NAC) stimulated a marked and a rapid dephosphorylation of Erk1/2, suggesting a regeneration of Erk1/2-directed phospahatase activity by NAC. ROS generation in ML-1 cells induced by TPA was suggested to occur in the mitochondrial electron transport chain (METC) based on the following observations: (i) undifferentiated ML-1 cells not only lack p67-phox and but also express a low level of p47-phox key components required for NADPH oxidase enzymatic activity, (ii) pretreatment with DPI, an inhibitor of NADH- and NADPH-dependent enzymes, or rhein, an inhibitor of complex I, blocked the ROS generation, and (iii) examination of the microarray analysis data and Western blot analysis data revealed an induction of MnSOD expression at both mRNA and protein levels in response to TPA. MnSOD is a key member of the mitochondrial defense system against mitochondrial-derived superoxide. Together, this study suggested that TPA stimulated ROS generation as a second messenger to activate Erk1/2 via a redox-mediated inhibition of Erk1/2-directed phosphatase in ML-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号