首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
MIP26/AQP0 is the major lens fiber membrane protein and has been reported to interact with many other lens components including crystallins, lipid, and cytoskeletal proteins. Regarding crystallins, many previous reports indicate that MIP26/AQP0 interacts with either only alpha-crystallin or some specific gamma-crystallins. Considering the possibly important role of MIP26/AQP0 in the reduction of light scattering in the lenses, we have further investigated its interaction with crystallins using confocal fluorescence resonance energy transfer (FRET) microscopy. Specifically, we used MIP26 tagged with a green fluorescence protein (GFP) as a donor and a crystallin (alphaA-, alphaB-, betaB2-, or gammaC-crystallin) tagged with a red fluorescence protein (RFP) as an acceptor. The two plasmids were cotransfected to HeLa cells. After culture, laser scattering microscopy images were taken in each of the three channels: GFP, RFP, and FRET. The net FRET images were then obtained by removing the contribution of spectral bleed-through. The pixels of net FRET were normalized with those of GFP. The results show the presence of measurable interactions between MIP26 and all crystallins, with the extent of interactions decreasing from alphaA- and alphaB-crystallin to betaB2- and gammaC-crystallin. Competitive interaction study using untagged alphaA-crystallin shows decreased net FRET, indicating specificity of the interactions between MIP26 and alphaA-crystallin. We conclude that all crystallins interact with MIP26, the physiological significance of which may be a reduction in the difference of refractive index between membrane and cytoplasm.  相似文献   

2.
Saha S  Das KP 《Proteins》2004,57(3):610-617
Alpha-crystallin, the major eye lens protein, exists as a large oligomer of two subunits, alphaA- and alphaB-crystallin. The individual subunits assemble into the oligomer in vitro. It is generally believed that oligomerization is pre-requisite for chaperone function, although there is no hard data available on this subject. We therefore undertook a study using limited tryptic digestion as a tool for examining the relationship between oligomeric size and chaperone activity of recombinant alphaA- and alphaB-crystallin. We showed that tryptic digested fragments of both alphaA- and alphaB-crystallin much smaller than the original subunits retain considerable chaperone activity. Our results indicate that chaperone activity depends more on the sequence of the reduced peptide than on its oligomeric size. The results also suggest that the presence of the alpha-crystallin domain and hydrophobic clefts on the protein surface, which correlate poorly with oligomeric size, are important for chaperone function.  相似文献   

3.
4.
Sreelakshmi Y  Sharma KK 《Biochemistry》2005,44(36):12245-12252
Previously, using the peptide scan method, we have determined that residues 42-57 and 60-71 in alphaB-crystallin (TSLSPFYLRPPSFLRA, named recognition sequence 1 or RS-1, and WFDTGLSEMRLE, named recognition sequence 2 or RS-2) are involved in interaction with alphaA-crystallin. To understand the significance of the RS-2 region in interactions between alphaA- and alphaB-crystallins, W60R, F61N, and S66G mutants of alphaB-crystallin were made and tested for their ability to interact with alphaA-crystallin. W60R and S66G mutations increased the oligomeric size of alphaB-crystallin by 1.6- and 2.7-fold respectively, whereas the F61N mutation had no effect. The tryptophan fluorescence intensity of alphaBS66G was 1.5-fold higher than that for the wild type. The intrinsic fluorescence of alphaBF61N was marginally lower than that of alphaB, whereas the fluorescence intensity of alphaBW60R decreased by 40% compared with that of alphaB. The relative availability of hydrophobic sites in the mutants was in the following order: alphaBS66G > alphaB = alphaBF61N = alphaBW60R. The far-UV CD profiles for the wild type and alphaB-crystallin mutants indicated no significant changes in their secondary structures, except for alphaBS66G, which showed an increase in alpha-helical content. The near-UV CD profiles of alphaBW60R and alphaBF61N were nearly similar to that of wild type alphaB. On the other hand, alphaBS66G beyond 270 nm exhibited a signature completely different from that of wild type alphaB. Mutations did not alter the chaperone-like activity of these proteins. The W60R mutation did not affect the rate of subunit exchange between alphaB- and alphaA-crystallins. On the other hand, the S66G mutation increased the subunit exchange rate by 100%, whereas the F61N mutation decreased the rate of subunit exchange between alphaB- and alphaA-crystallins by 36%. Our results establish the importance of residues 60-71 in oligomerization of alphaB-crystallin and subunit interaction between alphaB- and alphaA-crystallins.  相似文献   

5.
Crystallins are a diverse group of proteins that constitute nearly 90% of the total soluble proteins of the vertebrate eye lens and these tightly packed crystallins are responsible for transparency of the lens. These proteins have been studied in different model and non-model species for understanding the modifications they undergo with ageing that lead to cataract, a disease of protein aggregation. In the present investigation, we studied the lens crystallin profile of the tropical freshwater catfish Rita rita. Profiles of lens crystallins were analyzed and crystallin proteome maps of Rita rita were generated for the first time. alphaA-crystallins, member of the alpha-crystallin family, which are molecular chaperons and play crucial role in maintaining lens transparency were identified by 1- and 2-D immunoblot analysis with anti-alphaA-crystallin antibody. Two protein bands of 19-20 kDa were identified as alphaA-crystallins on 1-D immunoblots and these bands separated into 10 discrete spots on 2-D immunoblot. However, anti-alphaB-crystallin and antiphospho-alphaB-crystallin antibodies were not able to detect any immunoreactive bands on 1- and 2-D immunoblots, indicating alphaB-crystallin was either absent or present in extremely low concentration in Rita rita lens. Thus, Rita rita alpha-crystallins are more like that of the catfish Clarias batrachus and the mammal kangaroo in its alphaA- and alphaB-crystallin content (contain low amount from 5-9% of alphaB-crystallin) and unlike the dogfish, zebrafish, human, bovine and mouse alpha-crystallins (contain higher amount of alphaB-crystallin from 25% in mouse and bovine to 85% in dogfish). Results of the present study can be the baseline information for stimulating further investigation on Rita rita lens crystallins for comparative lens proteomics. Comparing and contrasting the alpha-crystallins of the dogfish and Rita rita may provide valuable information on the functional attributes of alphaA- and alphaB-isoforms, as they are at the two extremes in terms of alphaA-and alphaB-crystallin content.  相似文献   

6.
Experimental autoimmune uveitis (EAU) is a well-known animal model of posterior uveitis that is one of the major causes of blindness. EAU could be induced in susceptible animals (i.e., Lewis rat) by immune reactions using evolutionarily conserved retinal proteins, such as interphoto-receptor retinoid binding protein (IRBP), or epitaphs of the protein. First, we prepared the following four test groups that subsequently increased or decreased inflammation. (1) Normal control group, (2) IRBP-induced uveitis group, (3) Hemin-treated uveitis group, and (4) Sn(IV) protoporphyrin IX dichloride (SnPP)-treated uveitis group. Second, in the vitreous bodies of Lewis rats, the infiltrated proteins were analyzed using two-dimensional electrophoresis (2-DE), MALDI-TOF/MS, and Micro LC/LC-MS/MS analysis. Finally, Western blotting was applied to confirm the relative amount of crystallins and phosphorylation sites of alphaB-crystallin. Thirty spots were identified in vitreous bodies, and 27 of these spots were members of the crystallin family. Unlike betaA4- and B2-crystallins (that were significantly increased without truncation), alphaA- and B-crystallins were only truncated in EAU vitreous body. Taken as a whole, in the rat EAU model, we suggest that post-translational truncations of alphaA- and alphaB-crystallins, phosphorylation of alphaB-crystallin, and new production of betaA4- and betaB2-crystallins are intercorrelated with uveitis progression and inflammatory responses.  相似文献   

7.
McHaourab HS  Kumar MS  Koteiche HA 《FEBS letters》2007,581(10):1939-1943
To elucidate the structural and energetic basis of attractive protein interactions in the aging lens, we investigated the binding of destabilized mutants of betaB1-crystallin to the lens chaperones, alpha-crystallins. We show that the mutations enhance the binding affinity to alphaA- but not alphaB-crystallin at physiological temperatures. Complex formation disrupts the dimer interface of betaB1-crystallin consistent with the binding of a monomer. Binding isotherms obtained at increasing concentrations of betaB1-crystallin deviate from a classic binding equilibrium and display cooperative-like behavior. In the context of betaB1-crystallin unfolding equilibrium, these characteristics are reflective of the concentration-dependent change in the population of a dimeric intermediate that has low affinity to alphaA-crystallin. In the lens, where alpha-crystallin binding sites are not regenerated, this may represent an added mechanism to maintain lens transparency.  相似文献   

8.
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.  相似文献   

9.
Both LIM15/DMC1 and RAD51 are thought to be essential for meiosis in which homologous chromosomes pair and recombine. The primary purpose of the present study was to investigate the homotypic and heterotypic interactions among their terminal domains. We prepared cDNAs and recombinant proteins of the full-length, N-terminal, and the C-terminal domains of LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) from the basidiomycete Coprinus cinereus. In both two-hybrid assay in vivo and pull-down assay in vitro, either CoLim15 or CoRad51 interacted homotypically between the C-terminal domains, respectively, but no heterotypic interaction was observed between CoLim15 and CoRad51. The N-terminal domain of CoLim15 bound to ssDNA and dsDNA, while the C-terminal domain of CoRad51 appeared to interact weakly with ssDNA. Based on these results, the interaction among the strand-exchange proteins and meiosis was discussed.  相似文献   

10.
11.
12.
The biosynthesis of cysteine represents the final step of sulfate assimilation in bacteria and plants. It is catalyzed by the sequential action of serine acetyltransferase (SAT) and O -acetylserine (thiol) lyase (OAS-TL) which form a cysteine synthase (CS) complex in vitro . SAT and OAS-TL from Arabidopsis thaliana have previously been cloned, and now the first evidence is presented for the CS complex and SAT self-interaction in vivo employing the yeast two-hybrid system. Application of this method proved to be an efficient tool for the analysis of protein-protein interactions within a plant metabolic protein complex. Mapping of SAT domain structure revealed two new, independent domains with specific functions in protein-protein interaction. Analysis using truncated proteins proved the C-terminus of SAT to be sufficient for association with OAS-TL and to correlate with the putative transferase activity domain. SAT/SAT interaction was localized in the central region of the protein and occured also between SAT isoforms. Both protein interaction domains coincided with distinct α-helical and β-sheet clusters and together correlated with the minimal protein structure required for SAT catalysis as shown by functional complementation of an Escherichia coli mutant. The homo- and hetero-oligomerization properties are discussed with respect to the assumed function of the CS complex in metabolic channeling and activation of SAT by interaction with OAS-TL.  相似文献   

13.
betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain. Domain interaction sites may be removed by destroying the beta-strands, which can be done by site-specific mutations, substituting the beta-formers (Val, Phe, Leu) with Glu or Asn, strong beta-breakers. We have cloned the following beta-strand-deleted mutants, I20E, L34E, V54E, V60E, V73E, L97E, I109E, I124E, V144E, V152E, L162E, L165E, and V187E and their corresponding X --> Asn mutants. We also made two mutants, V46E and V129E, that were not on the beta-strand as controls. Disruption of protein-protein interactions was screened by a mammalian two-hybrid system assay. Protein-protein interactions decreased for all beta-strand-deleted mutants except I20E, L34E, and L162E mutants; this effect was not seen in the two mutant controls, V46E and V129E. The sequences around Val-54, Val-60, Val-73, and Leu-97 in the N-terminal region and Ile-109, Ile-124, Val-144, Val-152, Leu-165, and Val-187 in the C-terminal region that formed beta-strands appear to be important in dimerization. Some selected mutant proteins that showed strong (V46E and V129E) and reduced (V60E, V144E, V60N, and V144N) interactions were expressed in bacterial culture and were studied with spectroscopy and chromatography. The V60E and V144E mutants were found to be partially unfolded and incapable of forming a complete dimer.  相似文献   

14.
alphaA- and alphaB-crystallins are molecular chaperones expressed at low levels in lens epithelial cells, and their expression increases dramatically during differentiation to lens fibers. However, the functions of alphaA- and alphaB-crystallins in lens epithelial cells have not been studied in detail. In this study, the relative ability of alphaA- and alphaB-crystallin, in protecting lens epithelial cells from apoptotic cell death was determined. The introduction of alphaA-crystallin in the transformed human lens epithelial (HLE) B-3 lens epithelial cell line (which expresses low endogenous levels of alphaB-crystallin) led to a nearly complete protection of cell death induced by staurosporine, Fas monoclonal antibody, or the cytokine tumor necrosis factor alpha. To further study the relative protective activities of alphaA- and alphaB-crystallins, we created a cell line derived from alphaA-/-alphaB-/- double knockout mouse lens epithelia by infecting primary cells with Ad12-SV40 hybrid virus. The transformed cell line alphaAalphaBKO1 derived from alphaA/alphaB double knockout cells was transfected with alphaA- or alphaB-crystallin cDNA contained in pCIneo mammalian expression vector. Cells expressing different amounts of either alphaA-crystallin or alphaB-crystallin were isolated. The ability of alphaA- or alphaB-crystallin to confer protection from apoptotic cell death was determined by annexin labeling and flow cytometry of staurosporine- or UVA- treated cells. The results indicate that the anti-apoptotic activity of alphaA-crystallin was two to three-fold higher than that of alphaB-crystallin. Our work suggests that comparing the in vitro annexin labeling of lens epithelial cells is an effective way to measure the protective activity of alphaA- and alphaB-crystallin. Since the expression of alphaA-crystallin is largely restricted to the lens, its greater protective effect against apoptosis suggests that it may play a significant role in protecting lens epithelial cells from stress.  相似文献   

15.
Liu BF  Liang JJ 《FEBS letters》2007,581(21):3936-3942
Human lens beta-crystallin contains four acidic (betaA1-->betaA4) and three basic (betaB1-->betaB3) subunits. They oligomerize in the lens, but it is uncertain which subunits are involved in the oligomerization. We used a two-hybrid system to detect protein-protein interactions systematically. Proteins were also expressed for some physicochemical studies. The results indicate that all acidic-basic pairs (betaA-betaB) except betaA4-betaBs pairs show strong hetero-molecular interactions. For acidic or basic pairs, only two pairs (betaA1-betaA1 and betaA3-betaA3) show strong self-association. betaA2 and betaA4 show very weak self-association, which arises from their low solubility. Confocal fluorescence microscopy shows enormous protein aggregates in betaA2- or betaA4-crystallin transfected cells. However, coexpression with betaB2-crystallin decreased both the number and size of aggregates. Circular dichroism indicates subtle differences in conformation among beta-crystallins that may have contributed to the differences in interactions.  相似文献   

16.
Lens alphaA- and alphaB-crystallin have been reported to act differently in their protection against nonthermal destabilization of proteins. The nature of this difference, however, is not completely understood. Therefore we used a combination of thermally and solvent-induced structural changes to investigate the difference in the secondary, tertiary and quaternary structures of alphaA- and alphaB-crystallin. We demonstrate the relationship between the changes in the tertiary and quaternary structures for both polypeptides. Far-ultraviolet circular dichroism revealed that the secondary structure of alphaB-crystallin is more stable than that of alphaA-crystallin, and the temperature-induced secondary structure changes of both polypeptides are partially reversible. Tryptophan fluorescence revealed two distinct transitions for both alphaA- and alphaB-crystallin. Compared to alphaB-crystallin, both transitions of alphaA-crystallin occurred at higher temperature. The changes in the hydrophobicity are accompanied by changes in the quaternary structure and are biphasic, as shown by bis-1-anilino-8-naphthalenesulfonate fluorescence and sedimentation velocity. These phenomena explain the difference in the chaperone capacity of alphaA- and alphaB-crystallin carried out at different temperatures. The quaternary structure of alpha-crystallin is more stable than that of alphaA- and alphaB-crystallin. The latter has a strong tendency to dissociate under thermal or solvent destabilization. This phenomenon is related to the difference in subunit organization of alphaA- and alphaB-crystallin where both hydrophobic and ionic interactions are involved. We find that an important subunit rearrangement of alphaA-crystallin takes place once the molecule is destabilized. This subunit rearrangement is a requisite phenomenon for maintaining alpha-crystallin in its globular form and as a stable complex. On the base of our results, we suggest a four-state model describing the folding and dissociation of alphaA- and alphaB-crystallin better than a three-state model [Sun et al. (1999) J. Biol. Chem. 274, 34067-34071].  相似文献   

17.
Sharma R  Kachroo A  Bastia D 《The EMBO journal》2001,20(16):4577-4587
Using yeast forward and reverse two-hybrid analysis and biochemical techniques, we present novel and definitive in vivo and in vitro evidence that both the N-terminal domain I and C-terminal domain IV of the host-encoded DnaA initiator protein of Escherichia coli interact physically with plasmid-encoded RepA initiator of pSC101. The N-terminal, but not the C-terminal, region of RepA interacted with DnaA in vitro. These protein-protein interactions are critical for two very early steps of replication initiation, namely origin unwinding and helicase loading. Neither domain I nor IV of DnaA could individually collaborate with RepA to promote pSC101 replication. However, when the two domains are co-expressed within a common cell milieu and allowed to associate non-covalently with each other via a pair of leucine zippers, replication of the plasmid was supported in vivo. Thus, the result shows that physical tethering, either non-covalent or covalent, of domain I and IV of DnaA and interaction of both domains with RepA, are critical for replication initiation. The results also provide the molecular basis for a novel, potential, replication-based bacterial two-hybrid system.  相似文献   

18.
The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultanously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号