首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of de novo insertion of the medaka fish transposable element Tol2   总被引:2,自引:0,他引:2  
Koga A  Hori H 《Genetics》2000,156(3):1243-1247
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.  相似文献   

2.
Transposase proteins of some highly active DNA-based transposable elements, such as the maize Activator element, are known to possess nuclear localization signals (NLSs). We examined if this is also the case for the transposase of the medaka fish Tol2 element, a member of the hAT (hobo/Activator/Tam3) transposable element family, using human and mouse culture cells. Unexpectedly, the transposase-lacZ fusion protein, in which the lacZ is a location marker, was found to be present in the cytoplasm rather than in the nucleus, suggesting that the Tol2 transposase contains a signal for extranuclear localization. The same staining pattern was also observed with a fusion protein containing a 33-amino-acid region at about the center of the primary structure of the transposase. The Tol2 element might have a mechanism to control its transposition frequency that includes extranuclear localization of its transposase.  相似文献   

3.
Michel K  O'Brochta DA  Atkinson PW 《Gene》2002,298(2):141-146
Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase.  相似文献   

4.
The Tol2 element of the medaka fish Oryzias latipes is a member of the hAT (hobo/Activator/Tam3) transposable element family. There is evidence for rapid expansion in the genome and throughout the species in the past but a high spontaneous transposition rate is not observed with current fish materials, suggesting that the Tol2 element and its host species have already acquired an interactive mechanism to control the transposition frequency. DNA methylation is a possible contributing factor, given its involvement with many other transposable elements. We therefore soaked embryos in 5-azacytidine, a reagent that causes reduction in the DNA methylation level, and examined amounts of PCR products reflecting the somatic excision frequency, obtaining direct evidence that exposure promotes Tol2 excision. Our results thus suggest that methylation of the genome DNA is a factor included in the putative mechanisms of control of transposition of the Tol2 element.  相似文献   

5.
Moon S  Jung KH  Lee DE  Jiang WZ  Koh HJ  Heu MH  Lee DS  Suh HS  An G 《Plant & cell physiology》2006,47(11):1473-1483
Recent completion of the sequencing of the rice genome has revealed that it contains >40% repetitive sequences, most of which are related to inactive transposable elements. During the molecular analysis of the floral organ number 1/multiple pistil 2 (fon1/mp2) mutant, we identified an active transposable element dTok0 that was inserted at the kinase domain of FON1, a homolog of CLAVATA1. Insertion of the element into FON1 generated an 8 bp duplication of its target sites, which is one of the major characteristics of the hAT family of transposons. The dTok0 element was actively transposed out of the FON1 gene, leaving 5-8 bp footprints. Reinsertion into a new location was observed at a low frequency. Analysis of the genome sequence showed that the rice cultivar 'Nipponbare' contains 25 copies of dTok elements; similar numbers were present in all the Oryza species examined. Because dTok0 does not encode a transposase, enzyme activity should be provided in trans. We identified a putative autonomous transposon, Tok1 that contains an intact open reading frame of the Ac-like transposase.  相似文献   

6.
Herves is a functional Class II transposable element in Anopheles gambiae belonging to the hAT superfamily of elements. Class II transposable elements are used as gene vectors in this species and are also being considered as genetic drive agents for spreading desirable genes through natural populations as part of an effort to control malaria transmission. In this study, Herves was investigated in populations of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles merus in Mozambique over a period of 2 years. The copy number of Herves within these three species was approximately 5 copies per diploid genome and did not differ among species or between years. Based on the insertion-site occupancy-frequency distribution and existing models of transposable element dynamics, Herves appears to be transpositionally active currently or, at least recently, in all species tested. Ninety-five percent of the individuals within the populations of the three species tested contained intact elements with complete Herves transposase genes and this is consistent with the idea that these elements are currently active.  相似文献   

7.
8.
Two novel families of miniature inverted repeat transposable elements (MITEs), Vege and Mar, are described from Drosophila willistoni. Based on their structures, both element families are hypothesized to belong to the hAT superfamily of transposable elements. Both elements have perfect, inverted terminal repeats and 8-bp target site duplications and were found to have inserted within fixed copies of nonautonomous P elements. Vege is present in all studied D. willistoni populations and appears to have a relatively low copy number. Mar was identified in only a single D. willistoni population, and its copy number is presently unknown. Although MITEs occupy relatively large proportions of the genomes of a broad range of organisms, this may be their first unambiguous identification in any species of the genus Drosophila.  相似文献   

9.
Xu Z  Dooner HK 《The Plant cell》2005,17(2):375-388
More than half a century after the discovery of transposable elements, the number of genetically defined autonomous elements that have been isolated and characterized molecularly in any one species remains surprisingly small. Because of its rich genetic history, maize (Zea mays) is, by far, the plant with the largest number of such elements. Yet, even in maize, a maximum of only two autonomous elements have been characterized in any transposon superfamily. This article describes the isolation and molecular and genetic characterization of Mx (for mobile element induced by x-rays), a third autonomous member of the hAT transposon superfamily in maize. Mx is 3731 bp long, ends in 13-bp terminal inverted repeats (TIRs), and causes an 8-bp duplication of the target site. Mx and rMx (for responder to Mx), its 571-bp nonautonomous partner, define a classical family of interacting transposable elements. Surprisingly, the TIRs of Mx and rMx are only 73% identical, and the subterminal sequences are even less so, suggesting that Mx and rMx may represent diverging transposable elements still capable of mobilization by the same transposase. Sequences that are closer to the ends of either Mx or rMx are present in the maize genome. Mx is predicted to encode a 674-amino acid protein that is homologous to the Ac transposase. Although Mx and Ac are closely related, they do not interact. Other data suggest that maize may possess at least five families of hAT transposons that do not interact with each other. The possible origin of noninteracting transposon families within the same superfamily is discussed.  相似文献   

10.
11.
The transposable element family TU of the sea urchin Strongylocentrotus purpuratus, a higher eucaryote, has recently been described (D. Liebermann, B. Hoffman-Liebermann, J. Weinthal, G. Childs, R. Maxson, A. Mauron, S.N. Cohen, and L. Kedes, Nature [London] 306:342-347, 1983). A member of this family, TU4, has an insertion, called ISTU4, of non-TU DNA. ISTU4 is a member of a family of repetitive sequences, which are present in some 1,000 copies per haploid S. purpuratus genome (B. Hoffman-Liebermann, D. Liebermann, L.H. Kedes, and S.N. Cohen, Mol. Cell. Biol. 5:991-1001, 1985). We analyzed this insertion to determine whether it is itself a transposable element. The nucleotide sequence of ISTU4 was determined and showed an unusual structure. There are four, approximately 150 nucleotides long, imperfect direct repeats followed by a single truncated version of these repeats. This region is bounded at either side by approximately 100-nucleotide-long sequences that are not related to each other or to the repeats. Nucleotide sequences at the boundaries of ISTU4-homologous and flanking regions in five genomic clones show that ISTU4 represents a family of sequences with discrete ends, which we call Tsp elements. We showed that the genomic locus that carries a Tsp element in one individual was empty in other individuals and conclude that Tsp elements are a new and different type of transposable element. Tsp elements lack two features common to most other transposable elements: Tsp integration does not result in the duplication of host DNA, and there are no inverted repeats at their termini, although short inverted repeats are present at a distance from the termini.  相似文献   

12.
Tol1 is a DNA-based transposable element identified in the medaka fish Oryzias latipes and a member of the hAT (hobo/Activator/Tam3) transposable element family. Its mobility has already been demonstrated in the human and mouse, in addition to its original host species. This element is thus expected to be useful in a wide range of vertebrates as a genomic manipulation tool. Herein, we show that the Tol1 element can undergo excision in the African clawed frog Xenopus laevis, a major model organism for vertebrate genetics and developmental biology. An indicator plasmid carrying a Tol1 element was injected into 2- or 4-cell-stage embryos together with either a helper plasmid coding for the full-length Tol1 transposase or a modified helper plasmid yielding a truncated protein, and recovered from tailbud-stage embryos. Deletion of the Tol1 region of the indicator plasmid was observed in the experiment with the full-length transposase, and not in the other case. The deletion was associated with various footprint sequences at breakpoints, as frequently observed with many DNA-based transposable elements. These results indicate that the Tol1 element was excised from the indicator plasmid by catalysis of the transposase, and suggest that the Tol1 element is mobile in this frog species.  相似文献   

13.
Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II elements present in genomes as high-copy-number populations of small and highly homogeneous elements. While virtually all class II transposon families contain non-autonomous defective transposon copies, only a subset of them have a related MITE family. At present it is not known in which circumstances MITEs are generated instead of typical class II defective transposons. The ability to produce MITEs could be an exclusive characteristic of particular transposases, could be related to a particular structure of certain defective class II elements, or could be the consequence of particular constraints imposed by certain host genomes on transposon populations. We describe here a new family of pogo-like transposons from Medicago truncatula closely related to the Arabidopsis Lemi1 element that we have named MtLemi1. In contrast to the Arabidopsis Lemi1, present as a single-copy element and associated with hundreds of related Emigrant MITEs, MtLemi1 has attained >30 copies and has not generated MITEs. This shows that a particular transposon can adopt completely different strategies to colonize genomes. The comparison of AtLemi1 and MtLemi1 reveals transposase-specific domains and possible regulatory sequences that could be linked to the ability to produce MITEs.  相似文献   

14.
Transposase activity that mediates the mobility of class II transposable elements, is most commonly initiated by the assembly of higher order synaptic complexes, called transpososomes. The formation of these complexes, that contain the transposable element's DNA as well as two or more molecules of the transposase, is dependent on interactions between transposase molecules. Using the yeast Two-Hybrid system, we were able to identify three regions mediating multimerization of the Hermes transposase, an element used for germline transformation of insects belonging to the hAT family of transposable elements. One region facilitating protein binding of Hermes transposase molecules was found within the first 252 amino acids of the transposase. The second region was located at the C-terminus of the transposase, and was found to be specific for Hermes transposase multimerization. Amino acids 551-569 were not only required for multimerization but were also necessary for transposition of the element. The third region was located between amino acids 253 and 380 and was found to eliminate the non-specific protein binding ability of the N-terminal protein interaction region but was required for the specific protein binding ability of the C-terminal region of the transposase. Five point mutations affecting the structural integrity of the C-terminal multimerization region abolished or significantly reduced transpositional activity. The same region had been previously identified to mediate dimerization in Activator (Ac), another hAT element, indicating that hAT transposase multimerization is likely to be a prerequisite for mobility of their elements.  相似文献   

15.
16.
Transposable elements have proven to be invaluable tools for genetically manipulating a wide variety of plants, animals, and microbes. Some have suggested that they could be used to spread desirable genes, such as refractoriness to Plasmodium infection, through target populations of Anopheles gambiae, thereby disabling the mosquito's ability to transmit malaria. To achieve this, a transposon must remain mobile and intact after the initial introduction into the genome. Endogenous, active class II transposable elements from An. gambiae have not been exploited as gene vectors/drivers because none have been isolated. We report the discovery of an active class II transposable element, Herves, from the mosquito An. gambiae. Herves is a member of a distinct subfamily of hAT elements that includes the hopper-we element from Bactrocera dorsalis and B. cucurbitae. Herves was transpositionally active in mobility assays performed in Drosophila melanogaster S2 cells and developing embryos and was used as a germ-line transformation vector in D. melanogaster. Herves displays an altered target-site preference from the distantly related hAT elements, Hermes and hobo. Herves is also present in An. arabiensis and An. merus with copy numbers similar to that found in An. gambiae. Preliminary data from an East African population are consistent with the element being transpositionally active in mosquitoes.  相似文献   

17.
A few foldback (FB) transposable elements have, between their long terminal inverted repeats, central loop sequences which have been shown to be different from FB inverted repeat sequences. We have investigated loop sequences from two such FB elements by analyzing their genomic distribution and sequence conservation and, in particular, by determining if they are normally associated with FB elements. One of these FB loop sequences seems to be present in a few conserved copies found adjacent to FB inverted repeat sequences, suggesting that it represents an integral component of some FB elements. The other loop sequence is less well-conserved and not usually associated with FB inverted repeats. This sequence is a member of another family of transposable elements, the HB family, and was found inserted in an FB element only by chance. We compare the complete DNA sequences of two HB elements and examine the ends of four HB elements.  相似文献   

18.
19.
Pegasus, a novel transposable element, was discovered as a length polymorphism in the white gene of Anopheles gambiae. Sequence analysis revealed that this 535 bp element was flanked by 8 bp target site duplications and 8 bp perfect terminal inverted repeats similar to those found in many members of the Tcl family. Its small size and lack of long open reading frames preclude protein coding capacity. Southern analysis and in situ hybridization to polytene chromosomes demonstrated that Pegasus occurs in approximately 30 copies in the genomes of An. gambiae and its sibling species and is homogenous in structure but polymorphic in chromosomal location. Characterization of five additional elements by sequencing revealed nucleotide identities of 95% to 99%. Of 30 Pegasus-containing phage clones examined by PCR, only one contained an element exceeding 535 bp in length, due to the insertion of another transposable element-like sequence. Thus, the majority, if not all, extant Pegasus elements may be defective copies of a complete element whose contemporary existence in An. gambiae is uncertain. No Pegasus-hybridizing sequences were detected in nine other anophelines and three culicines examined, suggesting a very limited taxonomic distribution.  相似文献   

20.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号