首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Clenbuterol (Clen), a beta(2)-agonist, is known to produce skeletal and myocardial hypertrophy. This compound has recently been used in combination with left ventricular assist devices for the treatment of end-stage heart failure to reverse or prevent the adverse effects of unloading-induced myocardial atrophy. However, the mechanisms of action of Clen on myocardial cells have not been fully elucidated. In an attempt to clarify this issue, we examined the effects of chronic administration of Clen on Ca(2+) handling and substrate preference in cardiac muscle. Rats were treated with either 2 mg x kg(-1) x day(-1) Clen or saline (Sal) for 4 wk with the use of osmotic minipumps. Ventricular myocytes were enzymatically dissociated. Cells were field stimulated at 0.5, 1, and 2 Hz, and cytoplasmic Ca(2+) transients were monitored with the use of the fluorescent indicator indo-1 acetoxymethyl ester. Two-dimensional surface area and action potentials in current clamp were also measured. We found that in the Clen group there was significant hypertrophy at the organ and cellular levels compared with Sal. In Clen myocytes, the amplitude of the indo-1 ratio transients was significantly increased. Sarcoplasmic reticulum Ca(2+) content, estimated by rapid application of 20 mM caffeine, was significantly increased in the Clen group. The action potential was prolonged in the Clen group compared with Sal. Carbohydrate contribution to the tricarboxylic cycle (Krebs cycle) flux was increased several times in the Clen group. This increase was associated with decreased expression of peroxisome proliferator-activated receptor-alpha. This study shows that chronic administration of Clen induces cellular hypertrophy and increases oxidative carbohydrate utilization together with an increase in sarcoplasmic reticulum Ca(2+) content, which results in increased amplitude of the Ca(2+) transients. These effects could be important when Clen is used in conjunction with left ventricular assist devices treatment.  相似文献   

2.
A Y Chweh  S W Leslie 《Life sciences》1980,27(19):1777-1782
Acute (4g/kg i.p.) and chronic (SustacalTM diet containing 10% ethanol for 20 days) administration of ethanol to male Sprague-Dawley rats produced no change in the content or enzyme activity of brain arylsulphatase A. In contrast to the lack of effect on arylsulphatase A, the acute and chronic administration of ethanol resulted in an increase in the activity of brain arylsulphatase B (15.8% and 18.4%, respectively). However, the enhancement of the activity of arylsulphatase B was observed only in the brain homogenates which were subjected to osmotic shock. No enhancement of the arylsulphatase B activity was found in the supernatant soluble fraction after the acute and chronic administration of ethanol. Furthermore, acute and chronic ethanol administration did not alter the activities of arylsulphatase A and B in microsomes which have been suggested as sites of the synthesis of lysosomal hydrolases. In addition, 80 mM ethanol, in vitro, did not affect the activity of arylsulphatase A and B. The results of the present study suggest that the acute or chronic administration of ethanol might enhance the activity of lysosomal membrane bound arylsulphatase B via altering the lipid metabolism of lysosomal membranes.  相似文献   

3.
We studied the behavior of 21- and 35-day-old white rat pups in the “open field” and the learning of 36- to 41-day-old pups in a maze with food reinforcement. An opioid fragment of wheat gluten exorphin C (YPISL) was injected to pups chronically from day 1 to day 14 of their life or immediately prior to testing. We found that an acute peptide injection did not change animal behavior. The chronic intraperitoneal administration of the peptide at the same dose of 5 mg/kg significantly increased exploratory activity, decreased anxiety, and improved learning. Delayed exorphin C effects were more expressed in female rats.  相似文献   

4.
Brain phospholipid composition and the [32P]orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.  相似文献   

5.
We studied the effects of acute and chronic administration of secretin and caerulein, alone and in combination, on RNA and protein synthesis in the duodenum and oxyntic gland area as well as content of DNA, RNA and protein in rats. Secretin, 100 micrograms . kg-1, three times a day for 5 days, was associated with duodenal hypertrophy after the first 24 h of treatment and hyperplasia at the end of days 2 and 4; hypertrophy of the oxyntic gland area was observed only at 4 h after the first injection. Caerulein, 1 microgram . kg-1, also promoted duodenal hyperplasia after 2 and 4 days of treatment. The oxyntic gland area showed hypertrophy only at 4 h after the second injection of caerulein. These data indicate that both hormones can induce duodenal hyperplasia, probably by an amplification of the normal renewal cycle of the epithelial cells. They also demonstrated that growth of the oxyntic gland area is not promoted by these two peptides at the doses studied.  相似文献   

6.
Male adult Wistar rats received daily, at 9 a.m. and 5 p.m., 10 micrograms of Zn-protamine glucagon for 21 days by subcutaneous injections. The blood glucose level was not significantly modified. Cholesterol and triacylglycerol levels were decreased by 40 and 70% in plasma but not in the liver. The rates of cholesterol turnover processes were determined in vivo with an isotope balance method. Internal secretion of cholesterol (13.8 +/- 0.5 mg/day per rat in control rats and 22.4 +/- 0.9 mg/day per rat in glucagon-treated rats) and cholesterol transformation into bile acids were strikingly increased by chronic administration of glucagon. Biliary secretion rates of bile acids measured by a wash-out method were increased by 139%, while the intestinal bile acid pool was not changed. The enterohepatic cycle number was increased from five per day in control rats to nine per day in glucagon-treated rats. An increased turnover rate of the exchangeable cholesterol would explain the hypocholesterolemic effect of glucagon.  相似文献   

7.
8.
Dopamine autoreceptors were studied by determining the effects of chronic antidepressant treatment on the ability of several doses of apomorphine to decrease 3,4-dihydroxyphenylalanine accumulation (an index of dopamine synthesis in vivo) after saline or γ-hydroxybutyric acid lactone (γ-butyrolactone). 3,4-Dihydroxyphenylalanine accumulation was measured in nigrostriatal [nucleus caudatus putamen] and mesolimbic [nucleus accumbens and tuberculum olfactorium] nerve terminals. Apomorphine decreased 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen, tuberculum olfactorium and nucleus accumbens in a dose-related manner. Chronic imipramine (10 days) treatment attenuated the low and high dose apomorphine-induced decrease in 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen to a greater extent than the tuberculum olfactorium or nucleus accumbens. In γ-butyrolactone-treated animals chronic treatment with imipramine, amitriptyline or bupropion (10 days) attenuated the low dose apomorphine effect in the nucleus caudatus putamen, but not the tuberculum olfactorium or nucleus accumbens. Only 2 days of imipramine treatment had no effect on the apomorphine-induced decrease in 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen with or without γ-butyrolactone treatment. These data suggest that chronic treatment with three antidepressants produces dopamine autoreceptor subsensitivity in nigrostriatal neurons more than mesolimbic neurons and that this effect is not seen with short-term imipramine treatment.  相似文献   

9.
The effects of acute (3 g/kg i.p. two jours before sacrifice) and chronic (6% in drinking water and libitum for 15 days) ethanol administration to male rats (200 g body weight) on basal levels and release of TxB2n2 and 6-keto-PGF in brain cortex were studied. Also the effects of chronic ethanol (30 days) on the fatty acid composition of brain cortical tissue and liver phospholipids were investigated. Acute treatment reduced basal levels of 6-keto-PGF in brain cortical tissue (rats sacrificed by microwave radiation) and decreased the accumulation of 6-keto-PGF in brain cortex after post-decapitation ischemia (PDI). Basal TxB2 levels were also reduced in brain cortex, but TxB2 release during PDI was enhanced. Chronic treatment (15 days) induced changes of TxB2 and 6-ketoPGF levels and release during PDI in brain cortex less pronounced than those observed after acute treatment. The reduced effectiveness of chronic ethanol on brain vasoactive eicosanoids suggest adaptation processes. After chronic treatment (30 days), the fatty acid composition of brain cortex total phospholipids were not significantly modified. Changes of eicosanoid production after ethanol were thus independent from modifications of the fatty acid precursor pool(s). Ethanol-induced changes in the production of vascular eicosanoids in the CNS may be of relevance to the action of the compound on the CNS and may also have implications for the clinic.  相似文献   

10.
The effects of acute (3 g/kg i.p. two hours before sacrifice) and chronic (6% in drinking water and libitum for 15 days) ethanol administration to male rats (200 g body weight) on basal levels and release of TxB2 and 6-keto-PGF1 alpha in brain cortex were studied. Also the effects of chronic ethanol (30 days) on the fatty acid composition of brain cortical tissue and liver phospholipids were investigated. Acute treatment reduced basal levels of 6-keto- PGF1 alpha in brain cortical tissue (rats sacrificed by microwave radiation) and decreased the accumulation of 6-keto-PGF1 alpha in brain cortex after post-decapitation ischemia (PDI). Basal TxB2 levels were also reduced in brain cortex, but TxB2 release during PDI was enhanced. Chronic treatment (15 days) induced changes of TxB2 and 6-keto-PGF1 alpha levels and release during PDI in brain cortex less pronounced than those observed after acute treatment. The reduced effectiveness of chronic ethanol on brain vasoactive eicosanoids suggest adaptation processes. After chronic treatment (30 days), the fatty acid composition of brain cortex total phospholipids were not significantly modified. Changes of eicosanoid production after ethanol were thus independent from modifications of the fatty acid precursor pool(s). Ethanol-induced changes in the production of vascular eicosanoids in the CNS may be of relevance to the action of the compound on the CNS and may also have implications for the clinic.  相似文献   

11.
Effects of chronic glucagon administration on rat lipoprotein composition   总被引:2,自引:0,他引:2  
Male adult rats of the Wistar strain received daily at 9 a.m. and 5 p.m. 10 micrograms of Zn-protamine glucagon (Novo) for 21 days by subcutaneous injections. Plasma levels of cholesterol, triacylglycerol and phospholipids were decreased by 47, 40 and 21%, respectively. Lipoproteins were separated by sequential ultracentrifugation. Concentrations of cholesterol, phospholipids and proteins were decreased in chylomicrons, VLDL, LDL2 (1.040-1.063 g/ml) and HDL, LDL2 being the most affected by glucagon treatment (-70%). Triacylglycerol levels were decreased only in chylomicrons and VLDL. The relative proportions of cholesterol, triacylglycerol, phospholipids and proteins in lipoproteins were virtually unchanged by glucagon, suggesting a reduced number of some lipoprotein particles in plasma. However, lipoproteins of glucagon-treated rats were depleted in cholesteryl esters, while the proportion of triacylglycerol increased in LDL and HDL. Apo E contents were decreased in plasma, LDL1 (1.006-1.040 g/ml), LDL2 and HDL, whereas apo B100 proportions increased in VLDL and LDL1 in glucagon-treated rats. Glucagon appeared to be a potent hypolipidemic agent affecting mainly the apo-E-rich lipoproteins.  相似文献   

12.
The effects of acute and chronic administration of buspirone, a serotonin 5-HT1A agonist, on the 5-HT synthesis rates in various rat brain structures were investigated using alpha-[14C]methyl-L-tryptophan (alpha-[14C]MTrp) and an autoradiographic method. In the acute treatment study, buspirone (10 mg/kg) was injected subcutaneously 30 min before alpha-[14C]MTrp administration (30 microCi over 2 min) into a femoral vein. In the chronic treatment study, buspirone was given in a sustained fashion (10 mg/kg/day) for 14 days using an osmotic minipump implanted subcutaneously. Rats were killed 60 and 150 min after alpha-[14C]MTrp administration (two-time point method). A single dose of buspirone induced a significant decrease of 5-HT synthesis throughout the brain with the exception of the pineal body. However, the chronic treatment with buspirone did not induce significant differences in 5-HT synthesis in the brain. There was no significant difference in plasma free tryptophan concentration between any of the groups. The unaltered 5-HT synthesis rates in the chronic treatment study likely reflect a normalization of this parameter due to a desensitization of 5-HT1A autoreceptors on the cell body of 5-HT neurons, which has been previously shown to occur following long-term treatment with 5-HT1A agonists.  相似文献   

13.
Vanadate is known to have an insulin-like action which stimulates sugar transport in some systems like adipocytes and muscle cells, but in other systems it inhibits sugar transport by decreasing the activity of (Na+ +K+)-ATPase. To evaluate whether these two opposing actions may influence sugar transport across the intestine, we studied the effects of acute and chronic vanadate administration on the uptake of glucose, galactose, and 3-O-methylglucose in isolated rat intestinal cells. The sugar uptake measurements were also coupled by determinations of rubidium-86 uptake as a measure of the activity of the Na-K pump. Both acute and chronic vanadate administration reduced rubidium uptake by the cells but the reduction did not uniformly influence the uptake of the three sugars in question which were stimulated by the acute exposure of the cells to vanadate. Glucose uptake was also stimulated by chronic vanadate administration, but the uptakes of galactose and 3-O-methylglucose were respectively unaffected or inhibited by chronic vanadate. The findings suggest that the effect of vanadate on sugar transport is dependent on the net difference between two actions of vanadate: (i) stimulation of a receptor site (possibly an insulin receptor site) in the intestinal cell membrane and (ii) inhibition of the Na-K pump. During acute vanadate exposure, the stimulation of the receptor site was very likely a dominant feature which overwhelms the inhibition of the pump. Chronic exposure to vanadate led, on the other hand, to only a limited degree of stimulation of the receptor site and the inhibition of the Na-K pump became evident in the uptake measurements of galactose and 3-O-methyl-glucose. Glucose uptake, however, was stimulated by chronic vanadate ingestion due, very likely, to an increase in the metabolism of this sugar which occurred only with prolonged exposure of the rat intestine to vanadate.  相似文献   

14.
15.
After chronic administration of Phencyclidine (PCP) to rats, a high test dose (15 mg/kg) of PCP produced increases in stereotypic and ataxic behaviors, and a lower test dose of PCP (5 mg/kg) produced decreases in these behaviors, compared to behavioral responses of control rats. Rearing behavior in rats chronically administered PCP was increased at all test doses of the drug. Rats treated chronically with 15 mg/kg PCP for 9 days showed marked increases in most of these behaviors, whereas, rats receiving 5 mg/kg PCP for 9 days showed less change in several stereotypic and ataxic behaviors. Rats receiving 10 mg/kg PCP on a once-weekly schedule also exhibited more rearing and ataxic behavioral responses after the 3rd or 4th weekly PCP injection. Chronic PCP rats did not show more stereotypic or ataxic behavior after administration of apomorphine or amphetamine than control rats. These results suggest that chronic administration of PCP augments sensitivity to the stereotypic inducing effects of high doses, and decreases sensitivity to low doses of PCP.  相似文献   

16.
Opiate actions on mesocortical dopamine metabolism in the rat   总被引:3,自引:0,他引:3  
H S Kim  S Iyengar  P L Wood 《Life sciences》1986,39(21):2033-2036
The actions of parenteral morphine were examined with regard to dopamine metabolism in the mesocortical dopaminergic pathways of the rat. The effects of morphine on dopamine metabolism in the prefrontal, cingulate, pyriform and entorhinal cortices were compared with the actions of morphine on the metabolism of dopamine in the striatum and olfactory tubercle. In all tissues, except the entorhinal cortex, morphine significantly elevated the dopamine metabolites dihydroxphenylacetic acid and homovanillic acid. These data, along with previous studies of various pharmacological agents, clearly indicate that the mesocortical dopaminergic projections possess unique opioid and non-opioid regulatory inputs.  相似文献   

17.
18.
Effects of chronic administration of somatostatin on rat exocrine pancreas   总被引:1,自引:0,他引:1  
We studied the effects of somatostatin on synthesis of pancreatic DNA, RNA and protein and on pancreatic weight and contents of DNA, protein, amylase and chymotrypsinogen in rats. In short term synthesis studies, rats were injected with 100 micrograms . kg-1 somatostatin or 0.15 M NaCl (control) at times 0, 8 and 16 h. Eight rats from each treatment group were killed 2, 4, 8, 12, 16, 20 and 24 h after beginning treatment. Incorporation rates in vivo of [3H]thymidine into DNA, [3H]uridine into RNA and [14C]phenylalanine into total protein were significantly depressed by somatostatin. In long term studies, four groups of 12 rats were injected every 8 h for 5 days with 0.15 M NaCl or 11, 33 or 100 micrograms . kg-1 somatostatin. Body weight was unaffected but pancreatic contents of DNA, protein and enzymes were significantly decreased by somatostatin. Administration of somatostatin inhibits DNA, RNA and protein synthesis in exocrine pancreas with resulting decreases in DNA and enzyme contents.  相似文献   

19.
J H Yu 《Life sciences》1992,51(19):1493-1499
Effects of chronic administration of clonidine on parasympathetic-evoked saliva from both parotid and submandibular glands were investigated. Clonidine at 1 mg/kg/day for 5 or 7 days caused a significant reduction in the salivary secretion (flow rate and total volume) evoked by parasympathetic nerve stimulation of parotid but not submandibular glands. Ion concentrations (Na, K and Ca) of parasympathetically nerve-evoked parotid saliva were not altered. However, the total protein concentration as well as output, amylase activity, and output of such saliva were markedly increased. Possible mechanisms for clonidine-induced increase in nerve-elicited salivary protein concentration include release of neuropeptides, and changes in adrenergic receptor binding which need further study.  相似文献   

20.
The actions of intraventicular injections and intravenous infusions of nicotine were studied on dopamine stores and turnover in discrete areas of the forebrain of normal male rats. This was done by measuring the decline of the dopamine stores after tyrosine hydroxylase inhibition using alpha-methyl-tyrosine methyl ester (H44/68). The dopamine concentrations in the various telencephalic dopamine nerve terminal systems were measured using the Falck-Hillarp methodology involving quantitative microfluorimetry. The catecholamine concentrations in the anteromedial frontal cortex were measured biochemically using high pressure liquid chromatography combined with electrochemical detection. Intraventricular experiments. The dopamine levels in discrete areas of nuc. caudatus and nuc. accumbens were significantly reduced even with the lowest dose of nicotine (1 microgram/rat). Intraventricular injections of nicotine in a dose of 100 microgram/rat produced significant increases of dopamine turnover in various types of dopamine nerve terminal systems in the nuc. caudatus, nuc. accumbens and tuberculum olfactorium, and following a dose of 10 microgram/rat increases of dopamine turnover were observed in the medial part of the nuc. caudatus. Furthermore, nicotine (100 microgram/rat) significantly increased noradrenaline but not dopamine turnover within the anterofrontal cortex. Intravenous experiments. The dopamine levels were selectively reduced by nicotine (1000 microgram/kg) in the cholecystokinin positive and negative dopamine nerve terminal systems of the nuc. accumbens. On the other hand, dopamine levels in the anteromedial frontal cortex were increased after this dose of nicotine. Intravenous infusions of nicotine (10-1000 microgram/kg) produced dose-related increases of dopamine turnover in the various dopamine nerve terminal systems analysed in the telencephalon. These effects became significant with a dose of 1000 microgram/kg/h. The dopamine terminals in the nuc. caudatus showed a higher sensitivity to intravenous infusions of nicotine, being affected by 10-100 microgram/kg of nicotine. These findings suggest that relatively low dose of nicotine via an activation of central nicotine-like cholinergic receptors can reduce dopamine concentration and increase dopamine turnover in discrete limbic and striatal areas. These actions may in part represent the neurochemical basis for the rewarding actions of nicotine and for nicotine dependence in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号