首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our recent findings on Rheb and eIF4E address key questions of translational control in cancer and have implications for tumor therapy 1. Briefly, we find that Rheb a proximal activator of mTORC1 and protein translation can cooperate with c-Myc in tumorigenesis in vivo in a manner resembling Akt or the oncogenic eIF4E translation initiation factor. Rheb is highly expressed in some human lymphomas as well as other cancers and likely contributes to malignancies in different tissues 2. The cancer-relevant activities emanating from increased Rheb depend on activation of mTORC1 and are sensitive to rapamycin. Moreover,farnesyltransferase inhibitors (FTIs) can directly block Rheb activity and this is responsible for the therapeutic effect of these drugs in certain tumors. We will discuss here how translational control mechanisms contribute to oncogenesis and speculate on the potential and limitations of targeting these co-operating oncogenic events for therapy.  相似文献   

2.
Translational control: the ferritin story   总被引:1,自引:0,他引:1  
  相似文献   

3.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike nucleoplasmic localized MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus and the molecular target and mechanism of ARF's p53-independent function remain both controversial and a fertile field of research. Recent study has identified the nucleolar protein B23 as a target of ARF for implementing its growth inhibitory function. The ability of ARF to block cell cycle progression through the MDM2-p53 pathway and to suppress ribosomal biogenesis through B23 suggest a role for ARF in coordinating inhibitions of growth and proliferation.  相似文献   

4.
Repression of translation of oskar and nanos mRNAs prior to their posterior localization in the egg and embryo is essential for body patterning in Drosophila. The Cup protein is now found to have an important role in repression of both mRNAs, and apparently does so in a manner similar to the action of the Xenopus Maskin protein.  相似文献   

5.
6.
7.
Regulation of cyclin levels is important for many cell cycle-related processes and can occur at several different steps of gene expression. Translational regulation of cyclins, which occurs by a variety of regulatory mechanisms, permits a prompt response to signal transduction pathways induced by environmental stimuli. This review will summarize translational control of cyclins and its influence on cell cycle progression.  相似文献   

8.
All replication-competent retroviruses contain three main reading frames, gag, pol and env, which are used for the synthesis of structural proteins, enzymes and envelope proteins respectively. Complex retroviruses, such as lentiviruses, also code for regulatory and accessory proteins that have essential roles in viral replication. The concerted expression of these genes ensures the efficient polypeptide production required for the assembly and release of new infectious progeny virions. Retroviral protein synthesis takes place in the cytoplasm and depends exclusively on the translational machinery of the host infected cell. Therefore, not surprisingly, retroviruses have developed RNA structures and strategies to promote robust and efficient expression of viral proteins in a competitive cellular environment.  相似文献   

9.
Picornaviruses are small animal viruses with positive-stranded genomic RNA, which is translated using cap-independent internal translation initiation. The key role in this is played by cis elements of the 5'-untranslated region (5'-UTR) and, in particular, by the internal ribosome entry site (IRES). The function of translational cis elements requires both canonical translation initiation factors (eIFs) and additional IRES trans-acting factors (ITAFs). All known ITAFs are cell RNA-binding proteins which play a variety of functions in noninfected cells. Specific features of translational cis elements substantially affect the phenotype and, in particular, tissue tropism and pathogenic properties of picornaviruses. It is clear that, in some cases, the molecular mechanism of this is a change in interactions between viral cis elements and ITAFs. The properties and tissue distribution of ITAFs may determine the biological properties of other viruses that also use the IRES-dependent translation initiation. Since this mechanism is also involved in translation of several cell mRNAs, ITAF may contribute to the regulation of the most important aspects of the living activity in noninfected cells.  相似文献   

10.
Topisirovic I  Sonenberg N 《Cell》2011,145(3):333-334
The ribosome plays a universally conserved role in catalyzing protein synthesis. Kondrashov et?al. (2011) now provide evidence that the loss of function of ribosomal protein L38 in mice leads to a selective reduction in the translation of Hox mRNAs, thus suggesting that ribosomal proteins play a critical role during embryonic development.  相似文献   

11.
12.
13.
Translational control is a common regulatory mechanism for the expression of iron-related proteins. For example, three enzymes involved in erythrocyte development are regulated by three different control mechanisms: globin synthesis is modulated by heme-regulated translational inhibitor, erythroid 5-aminolevulinate synthase translation is inhibited by binding of the iron regulatory protein to the iron response element in the 5'-untranslated region (UTR); and 15-lipoxygenase is regulated by specific proteins binding to the 3'-UTR. Ceruloplasmin (Cp) is a multi-functional, copper protein made primarily by the liver and by activated macrophages. Cp has important roles in iron homeostasis and in inflammation. Its role in iron metabolism was originally proposed because of its ferroxidase activity and because of its ability to stimulate iron loading into apo-transferrin and iron efflux from liver. We have shown that Cp mRNA is induced by interferon (IFN)-gamma in U937 monocytic cells, but synthesis of Cp protein is halted by translational silencing. The silencing mechanism requires binding of a cytosolic inhibitor complex, IFN-Gamma-Activated Inhibitor of Translation (GAIT), to a specific GAIT element in the Cp 3'-UTR. Here, we describe our studies that define and characterize the GAIT element and elucidate the specific trans-acting proteins that bind the GAIT element. Our experiments describe a new mechanism of translational control of an iron-related protein and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.  相似文献   

14.
Translational control of specific mRNAs is a widespread mechanism of gene regulation, and it is especially important in pattern formation in the oocytes of organisms in which the embryonic axes are established maternally. Drosophila and Xenopus have been especially valuable in elucidating the relevant molecular mechanisms. Here, we comprehensively review what is known about translational control in these two systems, focusing on examples that illustrate key concepts that have emerged. We focus on protein-mediated translational control, rather than regulation mediated by small RNAs, as the former appears to be predominant in controlling these developmental events. Mechanisms that modulate the ability of the specific mRNAs to be recruited to the ribosome, that regulate polyadenylation of specific mRNAs, or that control the association of particular mRNAs into translationally inert ribonucleoprotein complexes will all be discussed.  相似文献   

15.
Groisman I  Jung MY  Sarkissian M  Cao Q  Richter JD 《Cell》2002,109(4):473-483
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.  相似文献   

16.
17.
The regulator of G protein signaling (RGS) proteins are a family of guanosine triphosphatase (GTPase)–accelerating proteins. We have discovered a novel function for RGS2 in the control of protein synthesis. RGS2 was found to bind to eIF2Bϵ (eukaryotic initiation factor 2B ϵ subunit) and inhibit the translation of messenger RNA (mRNA) into new protein. This effect was not observed for other RGS proteins tested. This novel function of RGS2 is distinct from its ability to regulate G protein–mediated signals and maps to a stretch of 37 amino acid residues within its conserved RGS domain. Moreover, RGS2 was capable of interfering with the eIF2–eIF2B GTPase cycle, which is a requisite step for the initiation of mRNA translation. Collectively, this study has identified a novel role for RGS2 in the control of protein synthesis that is independent of its established RGS domain function.  相似文献   

18.
Translational control during early development   总被引:17,自引:0,他引:17  
Early development in many animals is programmed by maternally inherited messenger RNAs. Many of these mRNAs are translationally dormant in immature oocytes, but are recruited onto polysomes during meiotic maturation, fertilization, or early embryogenesis. In contrast, other mRNAs that are translated in oocytes are released from polysomes during these later stages of development. Recent studies have begun to define the cis and trans elements that regulate both translational repression and translational induction of maternal mRNA. The inhibition of translation of some mRNAs during early development is controlled by discrete sequences residing in the 3' and 5' untranslated regions, respectively. The translation of other RNAs is due to polyadenylation which, at least in oocytes of the frog Xenopus laevis, is regulated by a U-rich cytoplasmic polyadenylation element (CPE). Although similar, the CPE sequences of various mRNAs are sufficiently different to be bound by different proteins. Two of these proteins and their interactions are described here.  相似文献   

19.
Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号