首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoreduction of the secondary electron acceptor, QB, has been characterized by light-induced Fourier transform infrared difference spectroscopy of Rb. sphaeroides and Rp. viridis reaction centers. The reaction centers were supplemented with ubiquinone (UQ10 or UQ0). The QB- state was generated either by continuous illumination at very low intensity or by single flash in the presence of redox compounds which rapidly reduce the photooxidized primary electron donor P+. This approach yields spectra free from P and P+ contributions making possible the study of the microenvironment of QB and QB-. Assignments are proposed for the C...O vibration of QB- and tentatively for the C = O and C = C vibrations of QB.  相似文献   

2.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

3.
Molecular changes associated with the photoreduction of the primary quinone acceptor Qa of photosystem II have been characterized by Fourier transform infrared spectroscopy. This reaction was light-induced at room temperature on photosystem II membranes in the presence of hydroxylamine and diuron. A positive signal at 1478 cm-1 is assigned to the C---O stretching mode of the semiquinone anion, and can be correlated to the negative C=O mode(s) of the neutral QA at 1645 cm-1 and/or 16 cm-1. Analogies with bacterial reaction center are found in the amide I absorption range at 1672 cm-1, 1653 cm-1 and 1630 cm-1. The stabilization of QA- does not result from a large protein conformation change, but involves perturbations of several amino acid vibrations. At 1658 cm-1, a negative feature sensitive to 1H-2H exchange is tentatively assigned to a NH2 histidine mode, while tryptophan D2252 could contribute to the signal at 1560/1550 cm-1.  相似文献   

4.
Breton J 《Biochemistry》2004,43(12):3318-3326
Photosynthesis transforms light into chemical energy by coupling electron transfer to proton uptake at the quinone Q(B). The possibility of initiating this process with a brief pulse of light and the known X-ray structure makes the photosynthetic bacterial reaction center a paradigm for studying coupled electron-proton transfer in biology. It has been established that electron transfer from the primary quinone Q(A) to Q(B) is gated by a protein conformational change. On the basis of a dramatic difference in the location of Q(B) in structures derived from crystals cooled to 90 K either under illumination or in the dark, a functional model for the gating mechanism was proposed whereby neutral Q(B) moves 4.5 A before receiving the electron from Q(A)(-) [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816]. Isotope-edited FTIR difference spectroscopy of Q(B) photoreduction at 290 and 85 K is used to investigate whether Q(B) moves upon reduction. We show that the specific interactions of the carbonyl groups of Q(B) and Q(B)(-) with the protein at a single binding site remain identical at both temperatures. Therefore, the different locations of Q(B) reported in many X-ray crystal structures probably are unrelated to functional electron transfer from Q(A)(-) to Q(B).  相似文献   

5.
The photoreduction of the primary electron acceptor, QA, has been characterized by light-induced Fourier transform infrared difference spectroscopy for Rb. sphaeroides reaction centers and for Rsp. rubrum and Rp. viridis chromatophores. The samples were treated both with redox compounds, which rapidly reduce the photooxidized primary electron P+, and with inhibitors of electron transfer from QA- to the secondary quinone QB. This approach yields spectra free from P and P+ contributions which makes possible the study of the microenvironment of QA and QA-.  相似文献   

6.
Mid-infrared spectral changes associated with the photoreduction of the bacteriopheophytin electron acceptor H(A) in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (Cfl.) aurantiacus are examined by light-induced Fourier transform infrared (FTIR) spectroscopy. The light-induced H(A)(-)/H(A) FTIR (1800-1200cm(-1)) difference spectrum of Cfl. aurantiacus RCs is compared to that of the previously well characterized purple bacterium Rhodobacter (Rba.) sphaeroides RCs. The most notable feature is that the large negative IR band at 1674cm(-1) in Rba. sphaeroides R-26, attributable to the loss of the absorption of the 13(1)-keto carbonyl of H(A) upon the radical anion H(A)(-) formation, exhibits only a very minor upshift to 1675cm(-1) in Cfl. aurantiacus. In contrast, the absorption band of the 131-keto C=O of H(A)(-) is strongly upshifted in the spectrum of Cfl. aurantiacus compared to that of Rba. sphaeroides (from 1588 to 1623cm(-1)). The data are discussed in terms of: (i) replacing the glutamic acid at L104 in Rba. sphaeroides R-26 RCs by a weaker hydrogen bond donor, a glutamine, at the equivalent position L143 in Cfl. aurantiacus RCs; (ii) a strengthening of the hydrogen-bonding interaction of the 131-keto C=O of H(A) with Glu L104 and Gln L143 upon H(A)(-) formation and (iii) a possible influence of the protein dielectric environment on the 131-keto C=O stretching frequency of neutral H(A). A conformational heterogeneity of the 133-ester C=O group of H(A) is detected for Cfl. aurantiacus RCs similar to what has been previously described for purple bacterial RCs.  相似文献   

7.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   

8.
The core of the photosynthetic apparatus of purple photosynthetic bacteria such as Rhodobacter capsulatus consists of a reaction center (RC) intimately associated with light-harvesting complex 1 (LH1) and the PufX polypeptide. The abundance of the RC and LH1 components was previously shown to depend on the product of the puhB gene (formerly known as orf214). We report here that disruption of puhB diminishes RC assembly, with an indirect effect on LH1 assembly, and reduces the amount of PufX. Under semiaerobic growth conditions, the core complex was present at a reduced level in puhB mutants. After transfer of semiaerobically grown cultures to photosynthetic (anaerobic illuminated) conditions, the RC/LH1 complex became only slightly more abundant, and the amount of PufX increased as cells began photosynthetic growth. We discovered that the photosynthetic growth of puhB disruption strains of R. capsulatus starts after a long lag period, which is due to physiological adaptation rather than secondary mutations. Using a hybrid protein expression system, we determined that the three predicted transmembrane segments of PuhB are capable of spanning a cell membrane and that the second transmembrane segment could mediate self-association of PuhB. We discuss the possible function of PuhB as a dimeric RC assembly factor.  相似文献   

9.
10.
Electrostatics-based calculations have been performed to examine the proton uptake upon reduction of the terminal electron acceptor Q(B) in the photosynthetic reaction center of Rhodobacter sphaeroides as a function of pH and the associated conformational equilibrium. Two crystal structures of the reaction center were considered: one structure was determined in the dark and the other under illumination. In the two structures, the Q(B) was found in two different positions, proximal or distal to the nonheme iron. Because Q(B) was found mainly in the distal position in the dark and only in the proximal position under illumination, the two positions have been attributed mostly to the oxidized and the reduced forms of Q(B), respectively. We calculated the proton uptake upon Q(B) reduction by four different models. In the first model, Q(B) is allowed to equilibrate between the two positions with either oxidation state. This equilibrium was allowed to vary with pH. In the other three models the distribution of Q(B) between the proximal position and the distal position was pH-independent, with Q(B) occupying only the distal position or only the proximal position or populating the two positions with a fixed ratio. Only the first model, which includes the pH-dependent conformational equilibrium, reproduces both the experimentally measured pH dependence of the proton uptake and the crystallographically observed conformational equilibrium at pH 8. From this model, we find that Q(B) occupies only the distal position below pH 6.5 and only the proximal position above pH 9.0 in both oxidation states. Between these pH values both positions are partially occupied. The reduced Q(B) has a higher occupancy in the proximal position than the oxidized Q(B). In summary, the present results indicate that the conformational equilibrium of Q(B) depends not only on the redox state of Q(B), but also on the pH value of the solution.  相似文献   

11.
S Miki  H Yamada  T Orita  M Yamamoto  Y Miki 《FEBS letters》1991,289(2):179-182
The photosynthetic reaction centers (RC) of the green bacterium Chloroflexus aurantiacus have been investigated by spectral and electrometrical methods. In these reaction centers, the secondary quinone was found to be reconstituted by the addition of ubiquinone-10. The equilibrium constant of electron transfer between primary (QA) and secondary (QB) quinones was much higher than that in RC of purple bacteria. The QB binding to the protein decreased under alkalinization with apparent pK 8.8. The single flash-induced electric responses were about 200 mV. An additional electrogenic phase due to the QB protonation was observed after the second flash in the presence of exogenous electron donors. The magnitude of this phase was 18% of that related to the primary dipole (P+QA-) formation. Since the C. aurantiacus RC lacks H-subunit, this subunit was not an obligatory component for electrogenic QB protonation.  相似文献   

12.
M W Sganga  C E Bauer 《Cell》1992,68(5):945-954
Most species of photosynthetic bacteria synthesize their photosynthetic apparatus only under conditions of reduced oxygen tension. To a large extent, this phenomenon is dependent upon anaerobic induction of photosynthesis gene expression. Here we report an example of a regulatory gene, regA, that is involved in transactivating anaerobic expression of the photosynthetic apparatus. We show that RegA is itself responsible for differential induction of light-harvesting and reaction center gene expression relative to operons for photopigment biosynthesis. Surprisingly, strains disrupted for regA were found to retain normal photosynthetic growth capabilities under high light intensities. We further show that photosynthetic growth in the absence of transactivating structural gene expression is a consequence of the superoperonal organization of the photosynthetic gene cluster.  相似文献   

13.
14.
The structure of the photosynthetic reaction-center from Rhodobacter sphaeroides has been determined at four different pH values (6.5, 8.0, 9.0, 10.0) in the neutral and in charge separated states. At pH 8.0, in the neutral state, we obtain a resolution of 1.87 A, which is the best ever reported for the bacterial reaction center protein. Our crystallographic data confirm the existence of two different binding positions of the secondary quinone (QB). We observe a new orientation of QB in its distal position, which shows no ring-flip compared to the orientation in the proximal position. Datasets collected for the different pH values show a pH-dependence of the population of the proximal position. The new orientation of QB in the distal position and the pH-dependence could be confirmed by continuum electrostatics calculations. Our calculations are in agreement with the experimentally observed proton uptake upon charge separation. The high resolution of our crystallographic data allows us to identify new water molecules and external residues being involved in two previously described hydrogen bond proton channels. These extended proton-transfer pathways, ending at either of the two oxo-groups of QB in its proximal position, provide additional evidence that ring-flipping is not required for complete protonation of QB upon reduction.  相似文献   

15.
《BBA》1985,809(2):284-287
The standard free-energy change accompanying the electron transfer from QA to QB was estimated from the intensity of the delayed fluorescence in chromatophores of Rhodopseudomonas sphaeroides. The value of 120 meV (at pH 8) suggests that QB is more stable in the chromatophore membrane than in the isolated reaction center.  相似文献   

16.
Wells TA  Takahashi E  Wraight CA 《Biochemistry》2003,42(14):4064-4074
In the primary quinone (Q(A)) binding site of Rb. sphaeroides reaction centers (RCs), isoleucine M265 is in extensive van der Waals contact with the ubiquinone headgroup. Substitution of threonine or serine for this residue (mutants M265IT and M265IS), but not valine (mutant M265IV), lowers the redox midpoint potential of Q(A) by about 100 mV (Takahashi et al. (2001) Biochemistry 40, 1020-1028). The unexpectedly large effect of the polar substitutions is not due to reorientation of the methoxy groups as similar redox potential changes are seen for these mutants with either ubiquinone or anthraquinone as Q(A). Using FTIR spectroscopy to compare Q(A)(-)/Q(A) IR difference spectra for wild type and the M265 mutant RCs, we found changes in the polar mutants (M265IT and M265IS) in the quinone C[double bond]O and C[double bond]C stretching region (1600-1660 cm(-1)) and in the semiquinone anion band (1440-1490 cm(-1)), as well as in protein modes. Modeling the mutations into the X-ray structure of the wild-type RC indicates that the hydroxyl group of the mutant polar residues, Thr and Ser, is hydrogen bonded to the peptide C[double bond]O of Thr(M261). It is suggested that the mutational effect is exerted through the extended backbone region that includes Ala(M260), the hydrogen bonding partner to the C1 carbonyl of the quinone headgroup. The resulting structural perturbations are likely to include lengthening of the hydrogen bond between the quinone C1[double bond]O and the peptide NH of Ala(M260). Possible origins of the IR spectroscopic and redox potential effects are discussed.  相似文献   

17.
The effects of electric fields on the absorption spectra of the carotenoids spheroidene and spheroidenone in photosynthetic antenna and reaction center complexes (wild-type and several mutants) from purple non-sulfur bacteria are compared with those for the isolated pigments in organic glasses. In general, the field effects are substantially larger for the carotenoid in the protein complexes than for the extracted pigments and larger for spheroidenone than spheroidene. Furthermore, the electrochromic effects for carotenoids in all complexes are much larger than those for the Qx transitions of the bacteriochlorophyll and bacteriopheophytin pigments which absorb in the 450-700 nm spectral region. The underlying mechanism responsible for the Stark effect spectra in the complexes is found to be dominated by a change in permanent dipole moment of the carotenoid upon excitation. The magnitude of this dipole moment change is found to be considerably larger in the B800-850 complex compared to the reaction center for spheroidene; it is approximately equivalent in the two complexes for spheroidenone. These results are discussed in terms of the effects of differences in the carotenoid functional groups, isomers and perturbations on the electronic structure from interactions with the organized environment in the proteins. these data provide a quantitative basis for the analysis of carotenoid bandshifts which are used to measure transmembrane potential, and they highlight some of the pitfalls in making such measurements on complex membranes containing multiple populations of carotenoids. The results for spheroidenone should be useful for studies of mutant proteins, since mutant strains are often grown semi-aerobically to minimize reversion.  相似文献   

18.
We use Normal Mode Analysis to investigate motions in the photosynthetic reaction center (RC) protein. We identify the regions involved in concerted fluctuations of the protein matrix and analyze the normalized amplitudes and the directionality of the first few dominant modes. We also seek to quantify the coupling of normal modes to long-range electron transfer (ET). We find that a quasi-continuous spectrum of protein motions rather than one individual mode contributes to light-driven electron transfer. This is consistent with existing theoretical models (e.g. the spin-boson/dispersed polaron model) for the coupling of the protein and solvent "bath" to charge separation events. [Figure: see text].  相似文献   

19.
20.
Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号