首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine proteinases are involved, besides digestive role, in immune response processes. In addition to the typical serine proteinase domain, proteinases from arthropod haemocytes contain so-called clip domains which are believed to exert regulatory functions. Clones coding for clip domain-containing serine proteinases were isolated from both Penaeus vannamei and Penaeus monodon haemocyte cDNA libraries. These proteins have most of the structural characteristics of serine proteinase domain, but in the clip domain there are only four cysteines, whereas in most other clip domains there are six. Such structures are named pseudo-clip domains and apparently seem to be widely distributed in Penaeid shrimp. These proteinases were only expressed in haemocytes and not in muscles, hypodermis, heart, tail stalk, pleopods or hepatopancreas.  相似文献   

2.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

3.
4.
The PYRIN domain is a conserved sequence motif identified in more than 20 human proteins with putative functions in apoptotic and inflammatory signalling pathways. The three-dimensional structure of the PYRIN domain from human ASC was determined by NMR spectroscopy. The structure determination reveals close structural similarity to death domains, death effector domains, and caspase activation and recruitment domains, although the structural alignment with these other members of the death-domain superfamily differs from previously predicted amino acid sequence alignments. Two highly positively and negatively charged surfaces in the PYRIN domain of ASC result in a strong electrostatic dipole moment that is predicted to be present also in related PYRIN domains. These results suggest that electrostatic interactions play an important role for the binding between PYRIN domains. Consequently, the previously reported binding between the PYRIN domains of ASC and ASC2/POP1 or between the zebrafish PYRIN domains of zAsc and Caspy is proposed to involve interactions between helices 2 and 3 of one PYRIN domain with helices 1 and 4 of the other PYRIN domain, in analogy to previously reported homophilic interactions between caspase activation and recruitment domains.  相似文献   

5.
BRCT domains     
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.  相似文献   

6.
A clip domain family of serine proteases has been identified in invertebrates as a crucial enzyme involved in diverse biological processes including immune responses and embryonic development. Although these proteins contain at least one clip domain at the N-terminal of the serine protease domain, the roles and three-dimensional structure of the clip domain are unknown. Prophenoloxidase activating factor-II (PPAF-II), a clip domain family of serine proteases, derived from the beetle Holotrichia diomphalia larvae, was overexpressed in the baculovirus system, and crystallized using the hanging-drop vapor-diffusion method. High-quality single crystals of PPAF-II were obtained in a precipitant solution containing 0.15 M ammonium sulfate, 1.25 M lithium sulfate monohydrate, and 0.1 M sodium citrate dehydrate (pH 5.5). These crystals belong to space group C2 with unit-cell parameters a=107.84, b=76.78, c=70.49 A and beta=113.93 degrees , and contain one or two molecules in the asymmetric unit. Determination of the three-dimensional structure of PPAF-II would clarify the functions of the clip domains.  相似文献   

7.
Fbxo7 and PI31 contain a conserved FP domain that mediates the homo-/hetero-dimerization of the proteins. The PI31 FP domain may also interact with the F-box motif in Fbxo7. The FP domain-mediated protein–protein interactions are important for the functions of Fbxo7 and PI31. The crystal structures of the Fbxo7 and PI31 FP domains were determined previously, showing that a C-terminal helix in the Fbxo7 FP domain was not present in the PI31 FP domain. Here, we determine the crystal structure of the PI31 FP domain using a longer protein construct. The structure is comparable to the Fbxo7 FP domain (including the C-terminal helix), indicating that the two FP domains share the same global fold. However, the FP domains also harbor their own characteristic structural features, mainly in the longest loop (which has a largely fixed conformation due to extensive hydrogen bonding and hydrophobic interactions) and the C-terminal end regions. The crystal structures also reveal fundamental differences in the modes of protein–protein interactions mediated by the two FP domains: the PI31 FP domain utilizes either an α interface or β interface for homodimeric interaction, whereas the Fbxo7 FP domain utilizes an αβ interface. We perform modeling studies to show that the domain-specific structural features may dictate specific modes of inter-domain interactions. We propose that a heterodimeric interaction would be mediated by an αβ interface consisting of the α-helical and β-sheet surfaces of the Fbxo7 and PI31 FP domains, respectively. We also discuss the structural/functional significance of various modes of FP domain-mediated protein–protein interactions.  相似文献   

8.
9.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   

10.
Piao S  Song YL  Kim JH  Park SY  Park JW  Lee BL  Oh BH  Ha NC 《The EMBO journal》2005,24(24):4404-4414
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.  相似文献   

11.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely to the CUB domains, sequence homology of the NTR domain with tissue inhibitors of metalloproteinases suggest proteinase inhibitory activity for the NTR domain. Here we present the three-dimensional structure of the NTR domain of human PCOLCE1 as the first example of a structural domain with the canonical features of an NTR module. The structure rules out a binding mode to metalloproteinases similar to that of tissue inhibitors of metalloproteinases but suggests possible inhibitory function toward specific serine proteinases. Sequence conservation between 13 PCOLCE proteins from different organisms suggests a conserved binding surface for other protein partners.  相似文献   

12.
The multi-domain, cell-envelope proteinases encoded by the genes prtB of Lactobacillus delbrueckii subsp. bulgaricus, prtH of Lactobacillus helveticus, prtP of Lactococcus lactis, scpA of Streptococcus pyogenes and csp of Streptococcus agalactiae have been compared using multiple sequence alignment, secondary structure prediction and database homology searching methods. This comparative analysis has led to the prediction of a number of different domains in these cell-envelope proteinases, and their homology, characteristics and putative function are described. These domains include, starting from the N-terminus, a pre-pro-domain for secretion and activation, a serine protease domain (with a smaller inserted domain), two large middle domains A and B of unknown but possibly regulatory function, a helical spacer domain, a hydrophilic cell-wall spacer or attachment domain, and a cell-wall anchor domain. Not all domains are present in each cell-envelope proteinase, suggesting that these multi-domain proteins are the result of gene shuffling and domain swapping during evolution.  相似文献   

13.
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles.  相似文献   

14.
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero-domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.Key words: BRCT domain, DNA repair, phosphorylation, phospho-peptide interaction, protein interaction, DNA binding, DNA damage response  相似文献   

15.
beta-Crystallins are polydisperse, oligomeric structural proteins that have a major role in forming the high refractive index of the eye lens. Using single crystal X-ray crystallography with molecular replacement, the structure of beta B2 dimer has been solved at 2.1 A resolution. Each subunit comprises an N and C-terminal domain that are very similar and each domain is formed from two similar "Greek key" motifs related by a local dyad. Sequence differences in the internally quadruplicated molecules, analysed in terms of their beta-sheets, hairpins and arches, give rise to structural differences in the motifs. Whereas the related family of gamma-crystallins are monomers, beta-crystallins are always oligomers. In the beta B2 subunit, the domains, each comprising two motifs, are separated by an extended linking peptide. A crystallographic 2-fold axis relates the two subunits of the dimer so that the N-terminal domain of one subunit of beta B2 and the C-terminal domain of the symmetry-related subunit are topologically equivalent to the two covalently connected domains of gamma B-crystallin. The intersubunit domain interface is very similar to the intradomain interface of gamma B, although many sequence differences have resulted in an increase in polar interactions between domains in beta B2. Comparison of the structures of beta B2 and gamma B-crystallins shows that the two families differ largely in the conformation of their connecting peptides. A further extensive lattice contact indicates a tetramer with 222 symmetry. The ways in which insertions and extensions in the beta-crystallin effect oligomer interactions are described. The two kinds of crystallin are analysed for structural features that account for their different stabilities. These studies are a basis for understanding formation of higher aggregates in the lens.  相似文献   

16.
Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a ‘jelly‐roll’ fold with two anti‐parallel β‐sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose‐dependent manner that was augmented by the blocking of anion transport. Further, cysteine‐activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.  相似文献   

17.
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.  相似文献   

18.
19.
The BEACH domain is highly conserved in a large family of eukaryotic proteins, and is crucial for their functions in vesicle trafficking, membrane dynamics and receptor signaling. However, it does not share any sequence homology with other proteins. Here we report the crystal structure at 2.9 A resolution of the BEACH domain of human neurobeachin. It shows that the BEACH domain has a new and unusual polypeptide backbone fold, as the peptide segments in its core do not assume regular secondary structures. Unexpectedly, the structure also reveals that the BEACH domain is in extensive association with a novel, weakly conserved pleckstrin-homology (PH) domain. Consistent with the structural analysis, biochemical studies show that the PH and BEACH domains have strong interactions, suggesting they may function as a single unit. Functional studies in intact cells demonstrate the requirement of both the PH and the BEACH domains for activity. A prominent groove at the interface between the two domains may be used to recruit their binding partners.  相似文献   

20.
The origin of life has puzzled molecular scientists for over half a century. Yet fundamental questions remain unanswered, including which came first, the metabolic machinery or the encoding nucleic acids. In this study we take a protein-centric view and explore the ancestral origins of proteins. Protein domain structures in proteomes are highly conserved and embody molecular functions and interactions that are needed for cellular and organismal processes. Here we use domain structure to study the evolution of molecular function in the protein world. Timelines describing the age and function of protein domains at fold, fold superfamily, and fold family levels of structural complexity were derived from a structural phylogenomic census in hundreds of fully sequenced genomes. These timelines unfold congruent hourglass patterns in rates of appearance of domain structures and functions, functional diversity, and hierarchical complexity, and revealed a gradual build up of protein repertoires associated with metabolism, translation and DNA, in that order. The most ancient domain architectures were hydrolase enzymes and the first translation domains had catalytic functions for the aminoacylation and the molecular switch-driven transport of RNA. Remarkably, the most ancient domains had metabolic roles, did not interact with RNA, and preceded the gradual build-up of translation. In fact, the first translation domains had also a metabolic origin and were only later followed by specialized translation machinery. Our results explain how the generation of structure in the protein world and the concurrent crystallization of translation and diversified cellular life created further opportunities for proteomic diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号