首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A voltage clamp technique was used to study sodium currents and gating currents in squid axons internally perfused with the membrane impermeant sodium channel blocker, QX-314. Block by QX-314 is strongly and reversibly enhanced if a train of depolarizing pulses precedes the measurement. The depolarization-induced block is antagonized by external sodium. This antagonism provides evidence that the blocking site for the drug lies inside the channel. Depolarization-induced block of sodium current by QX-314 is accompanied by nearly twofold reduction in gating charge movement. This reduction does not add to a depolarization-induced immobilization of gating charge normally present and believed to be associated with inactivation of sodium channels. Failure to act additively suggests that both, inactivation and QX-314, affect the same component of gating charge movement. Judged from gating current measurement, a drug-blocked channel is an inactivated channel. In the presence of external tetrodotoxin and internal QX-314, gating charge movement is always half its normal size regardless of conditioning, as it QX-314 is then permanently present in the channel.  相似文献   

2.
The effects of n-alkylguanidine derivatives on sodium channel conductance were measured in voltage clamped, internally perfused squid giant axons. After destruction of the sodium inactivation mechanism by internal pronase treatment, internal application of n-amylguanidine (0.5 mM) or n-octylguanidine (0.03 mM) caused a time-dependent block of sodium channels. No time-dependent block was observed with shorter chain derivatives. No change in the rising phase of sodium current was seen and the block of steady-state sodium current was independent of the membrane potential. In axons with intact sodium inactivation, an apparent facilitation of inactivation was observed after application of either n-amylguanidine or n-octylguanidine. These results can be explained by a model in which alkylguanidines enter and occlude open sodium channels from inside the membrane with voltage-independent rate constants. Alkylguanidine block bears a close resemblance to natural sodium inactivation. This might be explained by the fact that alkylguanidines are related to arginine, which has a guanidino group and is thought to be an essential amino acid in the molecular mechanism of sodium inactivation. A strong correlation between alkyl chain length and blocking potency was found, suggesting that a hydrophobic binding site exists near the inner mouth of the sodium channel.  相似文献   

3.
The inhibition of sodium currents by local anesthetics and other blocking compounds was studied in perfused, voltage-clamped segments of squid giant axon. When applied internally, each of the eight compounds studied results in accumulating "use-depnedent" block of sodium currents upon repetitive pulsing. Recovery from block occurs over a time scale of many seconds. In axons treated with pronase to completely eliminate sodium inactivation, six of the compounds induce a time- and voltage-dependent decline of sodium currents after activation during a maintained depolarization. Four of the time-dependent blocking compounds--procaine, 9-aminoacridine, N-methylstrychnine, and QX572--also induce altered sodium tail currents by hindering closure of the activation gating mechanism. Treatment of the axon with pronase abolishes use-dependent block completely by QX222, QX314, 9-aminoacridine, and N-methylstrychnine, but only partially be tetracaine and etidocaine. Two pulse experiments reveal that recovery from block by 9-aminoacridine or N-methyl-strychnine is greatly accelerated after pronase treatment. Pronase treatment abolishes both use-dependent and voltage-dependent block by QX222 and QX314. These results provide support for a direct role of the inactivation gating mechanism in producing the long-lasting use-dependent inhibition brought about by local anesthetic compounds.  相似文献   

4.
Gating current "fractionation" in crayfish giant axons.   总被引:2,自引:2,他引:0       下载免费PDF全文
Effects of changes in initial conditions on the magnitude and kinetics of gating current and sodium current were studied in voltage-clamped, internally-perfused, crayfish giant axons. We examined the effects of changes in holding potential, inactivating prepulses, and recovery from inactivation in axons with intact fast inactivation. We also studied the effects of brief interpulse intervals in axons pretreated with chloramine-T for removal of fast inactivation. We find marked effects of gating current kinetics induced by both prepulse inactivation and brief interpulse intervals. The apparent changes in gating current relaxation rates cannot be explained simply by changes in gating charge magnitude (charge immobilization) combined with "Cole-Moore-type" time shifts. Rather they appear to indicate selective suppression of kinetically-identifiable components within the control gating currents. Our results provide additional support for a model involving parallel, nonidentical, gating particles.  相似文献   

5.
Paragracine, isolated from the coelenterate species Parazoanthus gracilis, selectively blocks sodium channels of squid axon membranes in a frequency-dependent manner. The blocking action depends on the direction and magnitude of the sodium current rather than on the absolute value of the membrane potential. Paragracine blocks the channels only from the axoplasmic side and does so only when the current is in the outward direction. This block may be reversed by generating inward sodium currents. In axons in which sodium inactivation has been removed by pronase, the frequency-dependent block persists, and a slow time-dependent block is observed. A slow interaction with its binding site in the channel may account for the frequency-dependent block.  相似文献   

6.
Tetrodotoxin-resistant (TTX-R) Na(+) channels are much less susceptible to external TTX but more susceptible to external Cd(2+) block than tetrodotoxin-sensitive (TTX-S) Na(+) channels. Both TTX and Cd(2+) seem to block the channel near the "DEKA" ring, which is probably part of a multi-ion single-file region adjacent to the external pore mouth and is involved in the selectivity filter of the channel. In this study we demonstrate that other multivalent transitional metal ions such as La(3+), Zn(2+), Ni(2+), Co(2+), and Mn(2+) also block the TTX-R channels in dorsal root ganglion neurons. Just like Cd(2+), the blocking effect has little intrinsic voltage dependence, but is profoundly influenced by Na(+) flow. The apparent dissociation constants of the blocking ions are always significantly smaller in inward Na(+) currents than those in outward Na(+) current, signaling exit of the blocker along with the Na(+) flow and a high internal energy barrier for "permeation" of these multivalent blocking ions through the pore. Most interestingly, the activation and especially the inactivation kinetics are slowed by the blocking ions. Moreover, the gating changes induced by the same concentration of a blocking ion are evidently different in different directions of Na(+) current flow, but can always be correlated with the extent of pore block. Further quantitative analyses indicate that the apparent slowing of channel activation is chiefly ascribable to Na(+) flow-dependent unblocking of the bound La(3+) from the open Na(+) channel, whereas channel inactivation cannot happen with any discernible speed in the La(3+)-blocked channel. Thus, the selectivity filter of Na(+) channel is probably contiguous to a single-file multi-ion region at the external pore mouth, a region itself being nonselective in terms of significant binding of different multivalent cations. This region is "open" to the external solution even if the channel is "closed" ("deactivated"), but undergoes imperative conformational changes during the gating (especially the inactivation) process of the channel.  相似文献   

7.
Recent experimental evidence from a number of preparations indicates that sodium channel inactivation may be intrinsically voltage sensitive. Intrinsically voltage sensitive inactivation should produce a charge movement. Crayfish giant axons provide a unique opportunity to reexamine the slower components of gating currents (Ig) for a contribution from inactivation (Igh). In reference to other axon preparations, this preparation has relatively rapid inactivation, and steady-state inactivation has a comparatively steep voltage dependence. As predicted by a two-state scheme for voltage-sensitive sodium channel inactivation, Ig in crayfish axons includes a slow component with time constant comparable to the time constant of decay of the sodium current. Allowing for some delay in its onset (60 microseconds), inactivation as described by this slow component of Ig carries roughly the amount of charge predicted by the voltage dependence of inactivation.  相似文献   

8.
Tan JH  Saint DA 《Life sciences》2000,67(22):2759-2766
Brief extracellular application of millimolar concentrations of lidocaine affected sodium currents recorded in isolated rat ventricular myocytes in two ways: 1) a reduction of the maximum current consistent with a channel blocking action, and 2) a negative shift in the voltage dependence of inactivation consistent with an interaction with the inactivated state of the channel. Both effects occurred very rapidly (< 1 s). Decreasing extracellular pH to 6.4 increased the potency for channel block (EC50 1.8 +/- 0.2 mM at pH 7.4 and 0.8 +/- 0.1 mM at pH 6.5) and decreased the potency to shift inactivation (V(1/2) shift -42 mV by 1 mM lidocaine at pH 7.4 and -12.6 mV at pH 6.5). Channel block was slightly less at +90 mV compared to -40 mV at either pH (not statistically significant). The increase in potency for block at decreased extracellular pH, while intracellular pH is buffered, and the lack of voltage dependence of block, suggest that the charged form of lidocaine can block the channel by interacting with a site near the extracellular mouth, although alternative explanations are discussed.  相似文献   

9.
Macroscopic ionic sodium currents and gating currents were studied in voltage-clamped, dialyzed giant axons of the squid Loligo pealei under conditions of regular and inverse sodium gradients. Sodium currents showed regular kinetics but inactivation was incomplete, showing a maintained current for depolarizations lasting 18 ms. The ratio of the maintained current to the peak current increased with depolarization and it did not depend on the direction of the current flow or the sodium gradient. The time constant of inactivation was not affected by the sodium gradient. Double-pulse experiments allowed the separation of a normal inactivating component and a noninactivating component of the sodium currents. In gating current experiments, the results from double-pulse protocols showed that the charge was decreased by the prepulse and that the slow component of the 'on' gating current was preferentially depressed. As expected, charge immobilization was established faster at higher depolarizations than at low depolarizations, however, the amount of immobilized charge was unaffected by the pulse amplitude. This indicates that the incomplete sodium inactivation observed at high depolarizations is not the result of decreased charge immobilization; the maintained current must be due to a conductance that appears after normal charge immobilization and fast inactivation.  相似文献   

10.
When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.  相似文献   

11.
J M Huang  J Tanguy    J Z Yeh 《Biophysical journal》1987,52(2):155-163
Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Interaction of nonylguanidine with the sodium channel.   总被引:1,自引:1,他引:0       下载免费PDF全文
Alkyl and aromatic guanidines interact strongly with the tetrodotoxin (TTX)- receptor site in eel electroplaque membranes, showing competition with TTX. That these guanidines could be useful as highly reversible small molecular weight blockers of Na+ currents is therefore suggested. We have investigated the mechanisms of interaction of one of these derivatives, nonylguanidine, by studying its effects on Na+ currents in squid giant axons using voltage clamp techniques. Although nonylguanidine competed with TTX for binding to eel electroplaque membrane fragments (Ki = 1.8 X 10(-5) M), it reversibly blocked both inward and outward Na+ currents in intact axons only if applied to the interior. In axons with the Na+ inactivation removed by papain nonylguanidine produced a time-dependent block very similar to that reported for strychnine and pancuronium. The reduction of steady-state currents in these axons was also voltage-dependent, with increasing block observed with increasing step depolarization. These results suggest that nonylguanidine binds to a site accessible from the axoplasmic side of the channel, simulating Na+ inactivation in papain-treated axons and competing with the normal inactivation process in untreated axons. The competition between internal nonylguanidine and external TTX may result from perturbation by the positively charged nonylguanidine of the TTX-binding site from within the channel itself.  相似文献   

13.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

14.
The effects of disopyramide (Norpace) and 14 closely related structural analogues on the Na current of voltage clamped squid axons were examined to determine which physico-chemical properties and which changes in the structure of the Norpace molecule can alter the nature of its sodium channel blocking actions. Conventional voltage clamp technique for internally perfused giant axons was used. Axons were exposed to 100 microM concentrations via the internal perfusion solution, and the actions of the 15 analogues to produce resting and use-dependent block of Na current were assessed. The roles of Na ions and the activation and inactivation processes in the development of and recovery from use-dependent block of Na current induced by the Norpace analogues were also examined. The results indicate that for both mono-tertiary and bis-tertiary amines the potency to produce use-dependent block was proportional to molecular weight, whereas the correlation between potency to produce resting block and molecular weight was significant only for bis-tertiary amines. The mono- were more potent than the bis-compounds. However, comparisons between compounds having similar molecular weights and/or pKa values indicate that other factors also can influence blocking potency. For compounds within each homologous mono- or bis-tertiary amine series, hydrophobicity as estimated from log P values (P = octanol/water partition coefficient) was found to influence the potency to produce use dependent block of Na current. Use-dependent block was extant in axons internally exposed to pronase to remove the inactivation process, which indicates that inactivation is not an obligate condition for development of use-dependent block of Na current. An important role for the activation process in the development of use-dependent block of Na current is suggested by the finding that, in general, the voltage dependence of Na current activation paralleled that of use-dependent block. However, the potential dependence of use-dependent block produced by less hydrophobic but not by more hydrophobic compounds was shifted in the hyperpolarizing direction by removing Na+ from the external solution. Compounds with intermediate hydrophobicities altered the time course of Na current during its activating and inactivating phases. This finding can be explained by the kinetics of association and dissociation of drug molecules with channel receptor sites during the development and relaxation of use-dependent block rather than by postulating any major effect of drug to alter channel gating kinetics.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Potassium channel block by internal calcium and strontium   总被引:3,自引:1,他引:2       下载免费PDF全文
We show that intracellular Ca blocks current flow through open K channels in squid giant fiber lobe neurons. The block has similarities to internal Sr block of K channels in squid axons, which we have reexamined. Both ions must cross a high energy barrier to enter the blocking site from the inside, and block occurs only with millimolar concentrations and with strong depolarization. With Sr (axon) or Ca (neuron) inside, IK is normal in time course for voltages less than about +50 mV; but for large steps, above +90 mV, there is a rapid time-dependent block or "inactivation." From roughly +70 to +90 mV (depending on concentration) the current has a complex time course that may be related to K accumulation near the membrane's outer surface. Block can be deepened by either increasing the concentration or the voltage. Electrical distance measurements suggest that the blocking ion moves to a site deep in the channel, possibly near the outer end. Block by internal Ca can be prevented by putting 10 mM Rb in the external solution. Recovery from block after a strong depolarization occurs quickly at +30 mV, with a time course that is about the same as that of normal K channel activation at this voltage. 20 mM Mg in neurons had no discernible blocking effect. The experiments raise questions regarding the relation of block to normal channel gating. It is speculated that when the channel is normally closed, the "blocking" site is occupied by a Ca ion that comes from the external medium.  相似文献   

16.
Simulation of Na channel inactivation by thiazine dyes   总被引:7,自引:2,他引:5       下载免费PDF全文
Some dyes of the methylene blue family serve as artificial inactivators of the sodium channels when present inside squid axons at a concentration of approximately 0.1 mM. The dyes restore a semblance of inactivation after normal inactivation has been destroyed by pronase. In fibers that inactivate normally, the dyes hasten the decay of sodium current. Many dye-blocked channels conduct transiently on exit of the dye molecule after repolarization to the holding potential. In contrast, normally inactivated channels do not conduct during recovery from inactivation. Kinetic evidence shows that inactivation of a dye-blocked channel is unlikely or impossible, which suggests that dye molecules compete with inactivation "particles" for the same site. In the absence of tetrodotoxin, the dyes do not affect the ON gating current unless the interpulse interval is very short. If sufficient equilibration time is allowed during a pulse, the initial amplitude of the OFF gating current is reduced to near zero. This suggests that a dye molecule is a Na channel completely blocks that channel's gating current, even the fraction that is resistant to normal inactivation. Dyes block INa and Ig with the same time course. This provides the strongest evidence to date that virtually all of recorded "gating current" is associated with Na channels. Tetrodotoxin greatly slows dissociation of dye molecules from Na channels and reduced gating current during both opening and closing of the channels.  相似文献   

17.
Single-channel, macroscopic ionic, and macroscopic gating currents were recorded from the voltage-dependent sodium channel using patch-clamp techniques on the cut-open squid giant axon. To obtain a complete set of physiological measurements of sodium channel gating under identical conditions, and to facilitate comparison with previous work, comparison was made between currents recorded in the absence of extracellular divalent cations and in the presence of physiological concentrations of extracellular Ca2+ (10 mM) and Mg2+ (50 mM). The single-channel currents were well resolved when divalent cations were not included in the extracellular solution, but were decreased in amplitude in the presence of Ca2+ and Mg2+ ions. The instantaneous current-voltage relationship obtained from macroscopic tail current measurements similarly was depressed by divalents, and showed a negative slope-conductance region for inward current at negative potentials. Voltage dependent parameters of channel gating were shifted 9-13 mV towards depolarized potentials by external divalent cations, including the peak fraction of channels open versus voltage, the time constant of tail current decline, the prepulse inactivation versus voltage relationship, and the charge-voltage relationship for gating currents. The effects of divalent cations are consistent with open channel block by Ca2+ and Mg2+ together with divalent screening of membrane charges.  相似文献   

18.
The group-specific protein reagents, N-bromacetamide (NBA) and N- bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur- containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.  相似文献   

19.
We have studied ionic and gating currents in mutant and wild-type Shaker K+ channels to investigate the mechanisms of channel activation and the relationship between the voltage sensor of the channel and its inactivation particle. The turn on of the gating current shows a rising phase, indicating that the hypothetical identical activation subunits are not independent. Hyperpolarizing prepulses indicate that most of the voltage-dependence occurs in the transitions between closed states. The open-to-closed transition is voltage independent, as suggested by the presence of a rising phase in the off gating currents. In Shaker channels showing fast inactivation, the off gating charge is partially immobilized as a result of depolarizing pulses that elicit inactivation. In mutant channels lacking inactivation, the charge is recovered quickly at the end of the pulse. Internal TEA mimics the inactivation particle in its behavior but the charge immobilization is established faster and is complete. We conclude that the activation mechanism cannot be due to the movement of identical independent gating subunits, each undergoing first order transitions, and that the inactivation particle is responsible for charge immobilization in this channel.  相似文献   

20.
Kinetic effects of osmotic stress on sodium ionic and gating currents have been studied in crayfish giant axons after removal of fast inactivation with chloramine-T. Internal perfusion with media made hyperosmolar by addition of formamide or sucrose, reduces peak sodium current (before and after removal of fast inactivation with chloramine-T), increases the half-time for activation, but has no effect on tail current deactivation rate(s). Kinetics of ON and OFF gating currents are not affected by osmotic stress. These results confirm (and extend to sodium channels) the separation of channel gating mechanisms into voltage-sensitive and solvent-sensitive processes recently proposed by Zimmerberg J., F. Bezanilla, and V. A. Parsegian. (1990. Biophys. J. 57:1049-1064) for potassium delayed rectifier channels. Additionally, the kinetic effects produced by hyperosmolar media seem qualitatively similar to the kinetic effects of heavy water substitution in crayfish axons (Alicata, D. A., M. D. Rayner, and J. G. Starkus. 1990. Biophys. J. 57:745-758). However, our observations are incompatible with models in which voltage-sensitive and solvent-sensitive gating processes are presumed to be either (a) strictly sequential or, (b) parallel and independent. We introduce a variant of the parallel model which includes explicit coupling between voltage-sensitive and solvent-sensitive processes. Simulations of this model, in which the total coupling energy is as small as 1/10th of kT, demonstrate the characteristic kinetic changes noted in our data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号