首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.  相似文献   

3.
Caillard O 《PloS one》2011,6(7):e22322
Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABA(A) receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABA(A) activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABA(A) receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing.  相似文献   

4.
Induction of GABAergic postsynaptic differentiation by alpha-neurexins   总被引:2,自引:0,他引:2  
Beta-neurexin and neuroligin cell adhesion molecules contribute to synapse development in the brain. The longer alpha-neurexins function at both glutamate and gamma-aminobutyric acid (GABA) synapses in coupling to presynaptic calcium channels. Binding of alpha-neurexins to neuroligins was recently reported, but the role of the alpha-neurexins in synapse development has not been well studied. Here we report that in COS cell neuron coculture assays, all three alpha-neurexins induce clustering of the GABAergic postsynaptic scaffolding protein gephyrin and neuroligin 2 but not of the glutamatergic postsynaptic scaffolding protein PSD-95 or neuroligin 1/3/4. alpha-Neurexins also induce clustering of the GABA(A) receptor gamma2 subunit. This synapse promoting activity of alpha-neurexins is mediated by the sixth LNS (laminin neurexin sex hormone-binding protein) domain and negatively modulated by upstream sequences. Although inserts at splice site 4 (S4) in beta-neurexins promote greater clustering activity for GABA than glutamate proteins in coculture assay, alpha-neurexin-specific sequences confer complete specificity for GABA proteins. We further report a developmental increase in the ratio of -S4 to +S4 forms of neurexins correlating with an increase in glutamate relative to GABA synaptogenesis and activity regulation of splicing at S4. Thus, +S4 beta-neurexins and, even more selectively, alpha-neurexins may be mediators of GABAergic synaptic protein recruitment and stabilization.  相似文献   

5.
In a previous study of a kindling model using stimulation of the entorhinal cortex we found a redistribution of synaptic vesicles into the close vicinity of the active zone of synapses of Type I (Gray 1959) in the hippocampal gyrus dentatus. In this paper, ultrastructural studies of the same model are being continued using planimetry of the synaptic apparatus. A significant increase of the postsynaptic apparatus, area enlargement by 53%, increase of the perimeter by 28% and shape irregularity are being reported. No changes in shape or in size have been demonstrated in presynaptic structures or in the morphology of presynaptic mitochondria. These findings are discussed in relation to increased functional readiness of the synapses as signs of active reconstruction of the synaptic apparatus.  相似文献   

6.
大脑最基本性质是快速适应周围环境改变的能力,这主要是通过改变各个神经细胞之间的连接来实现的。有多种不同机制可以调节突触的强度,包括突触效率的稳态调节、突触增强和减弱的形态学表现以及钙在其中的作用。当开始了解这些突触改变的细胞生物学机制的时候,也应该考虑这种突触可塑性在完整大脑中的功能意义。因此,应用最新的成像手段来研究经验如何影响皮层环路中突触的改变,尤其是在体双光子显微技术可以在新皮层的单个神经元水平上研究形态和功能可塑性。这些实验将逐渐填补传统的细胞水平和系统水平研究之间的空白,并将有助于更全面充分地理解突触可塑性这种现象及其在皮层功能乃至动物行为中所起的作用。  相似文献   

7.
8.
1. The effects of dopamine and several synthetic agonists and antagonists were studied using two identified neurons of the snail Lymnaea stagnalis. 2. In both the buccal-2 (B-2) neurons and the pedal giant (RPeD1) neuron dopamine elicited a hyperpolarizing response at least partly due to potassium efflux. RPeD1 is itself dopaminergic, implicating autoreceptors in its response to dopamine. 3. The following agents were tested: agonists--LY171555, pergolide, SKF38393, (-)-3-PPP, R(-)NPA and dopamine; antagonists--SCH23390, sulpiride, and metaclopramide. Dibutyryl cAMP was applied to determine whether the response is cAMP-mediated. 4. Results indicate that the pharmacological profiles of dopamine receptors on these neurons are inconsistent with those of either D-1, D-2 or autoreceptors in mammals.  相似文献   

9.
GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.  相似文献   

10.
Fiumelli H  Cancedda L  Poo MM 《Neuron》2005,48(5):773-786
Activity-induced modification of GABAergic transmission contributes to the plasticity of neural circuits. In the present work we found that prolonged postsynaptic spiking of hippocampal neurons led to a shift in the reversal potential of GABA-induced Cl- currents (E(Cl)) toward positive levels in a duration- and frequency-dependent manner. This effect was abolished by blocking cytosolic Ca2+ elevation and mimicked by releasing Ca2+ from internal stores. Activity- and Ca2+-induced E(Cl) shifts were larger in mature neurons, which express the K-Cl cotransporter KCC2 at high levels, and inhibition of KCC2 occluded the shifts. Overexpression of KCC2 in young cultured neurons, which express lower levels of KCC2 and have a more positive E(Cl), resulted in hyperpolarized E(Cl) similar to that of mature cells. Importantly, these young KCC2-expressing neurons became responsive to neuronal spiking and Ca2+ elevation by showing positive E(Cl) shifts. Thus, repetitive postsynaptic spiking reduces the inhibitory action of GABA through a Ca2+-dependent downregulation of KCC2 function.  相似文献   

11.
The mechanism of Cl- secretion in the isolated, resting (i.e. cimetidine-treated) gastric mucosa of Necturus has been investigated with radioisotopic and electrophysiological techniques. Measurement of transepithelial 36Cl- fluxes (mucosal to serosal (M leads to S), Jms Cl-; S leads to M, Jsm Cl-) during control conditions show that at open circuit, when the transepithelial potential difference psi ms = 20 mV (S ground), Jms Cl- = Jsm Cl-, i.e. Jnet Cl- = 0, but during short-circuit current conditions Jnet Cl- = I sc = 2 mu equiv cm-2 h. Experiments with low [Cl-] solutions indicate that Cl- exchange diffusion does not contribute significantly to either Jms Cl- or Jsm Cl-. Double-barrelled, Cl- -selective microelectrodes showed that in open circuit, the cellular (C) chemical potential for Cl-, psi c Cl- = 31 mV (apparent [Cl-] = 29 mM), the electrical potential across the M membrane, psi m = -34 mV (mucosa ground) while that across the S membrane, psi s = -52 mV (serosa ground). During short-circuit current conditions, psi m = psi s = -49 mV and [Cl-]c = 30 mM. The permeability of the M membrane to Cl- (Pm Cl-) was calculated both from the tracer experiments and the electrode measurements by using the constant-field equation. Short-term (45 s) uptake of 36Cl- at [Cl]m = 96 mM during short circuit conditions gave Pm Cl- = 2.6 x 10(-5) cm s-1. Measurement of [Cl-]c by means of the electrodes when [Cl-]m was changed from 96 to 2 mM or from 2 to 96 mM gave Pm Cl- = 2.9-5.7 x 10(-5) cm s-1. Our results indicate that during open circuit conditions Cl- is accumulated across the S membrane into gastric cells in an energy-requiring step, but since Jnet Cl- = 0, Cl- must leak back into the S solution at a rate equal to the entry rate. When the tissue is short-circuited, Cl- secretion occurs (Jnet Cl- = Isc) owing to the same energy-requiring accumulation of Cl- by the cells and a passive (apparently electrodiffusive) movement across the mucosal membrane.  相似文献   

12.
Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.  相似文献   

13.
Active zones (AZs) are presynaptic membrane domains mediating synaptic vesicle fusion opposite postsynaptic densities (PSDs). At the Drosophila neuromuscular junction, the ELKS family member Bruchpilot (BRP) is essential for dense body formation and functional maturation of AZs. Using a proteomics approach, we identified Drosophila Syd-1 (DSyd-1) as a BRP binding partner. In vivo imaging shows that DSyd-1 arrives early at nascent AZs together with DLiprin-α, and both proteins localize to the AZ edge as the AZ matures. Mutants in dsyd-1 form smaller terminals with fewer release sites, and release less neurotransmitter. The remaining AZs are often large and misshapen, and ectopic, electron-dense accumulations of BRP form in boutons and axons. Furthermore, glutamate receptor content at PSDs increases because of excessive DGluRIIA accumulation. The AZ protein DSyd-1 is needed to properly localize DLiprin-α at AZs, and seems to control effective nucleation of newly forming AZs together with DLiprin-α. DSyd-1 also organizes trans-synaptic signaling to control maturation of PSD composition independently of DLiprin-α.  相似文献   

14.
15.
16.
The effects of noradrenaline (NA) and its analogs on subfornical organ (SFO) neurons in rat slice preparations were investigated by using whole cell patch-clamp recording. In the current-clamp mode, the application of NA at 10-100 microM produced membrane depolarization (63%, 17 responsive neurons/27 neurons tested) and hyperpolarization (22%, 6/27 neurons). In the voltage-clamp mode, NA application at 1-100 microM produced inward currents (69%, 42/61 neurons) and outward currents (23%, 14/61 neurons). These currents remained in the presence of TTX or both glutamate and GABA receptor antagonists. In most of the neurons (25/31 neurons) showing inward currents in the presence of NA, the membrane conductance was not changed by voltage ramps or hyperpolarizing pulse stimulation. Similar responses were obtained by the application of the alpha1-agonist phenylephrine. The phenylephrine-induced inward currents were inhibited by the alpha1-antagonist prazosin. The alpha2-agonist clonidine decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (4/10 neurons). In addition, RT-PCR assay and immunohistochemical staining showed the existence of alpha1-adrenoceptors in the SFO. The results suggest that SFO neurons in rats are activated postsynaptically through alpha1-adrenoceptors and that the activation is enhanced by suppressing GABAergic inhibitory synaptic inputs through presynaptic alpha2-adrenoceptors.  相似文献   

17.
Knott GW  Quairiaux C  Genoud C  Welker E 《Neuron》2002,34(2):265-273
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.  相似文献   

18.
Rapid synaptic scaling induced by changes in postsynaptic firing   总被引:1,自引:0,他引:1  
Ibata K  Sun Q  Turrigiano GG 《Neuron》2008,57(6):819-826
  相似文献   

19.
The paper deals with analysis of the action of enantiomers 3-PPP on memory trace reproduction disturbed by amnestic effects and spontaneous forgetting in mice. A considerable antiamnestic effect is shown of (+)3-PPP and (-)3-PPP in 10 mg/kg doze changing the activity of postsynaptic dopamine receptors. The influence of drugs in 2 mg/kg doze changing the activity of presynaptic receptors consisted in recovery of conditioned habit only in situation of a weak amnestic effect and at forgetting, when the level of reproduction was like a weak amnesia. The range of enantiomers 3-PPP action on reproduction processes disturbed by amnesia or forgetting is determined by the possibility of specific activation of pre- and postsynaptic receptors at different depth of disturbances of memory trace reproduction causing differentiation of 3-PPP effects.  相似文献   

20.
The CLC-family protein CLC-ec1, a bacterial homologue of known structure, stoichiometrically exchanges two Cl(-) for one H(+) via an unknown membrane transport mechanism. This study examines mutations at a conserved tyrosine residue, Y445, that directly coordinates a Cl(-) ion located near the center of the membrane. Mutations at this position lead to "uncoupling," such that the H(+)/Cl(-) transport ratio decreases roughly with the volume of the substituted side chain. The uncoupled proteins are still able to pump protons uphill when driven by a Cl(-) gradient, but the extent and rate of this H(+) pumping is weaker in the more uncoupled variants. Uncoupling is accompanied by conductive Cl(-) transport that is not linked to counter-movement of H(+), i.e., a "leak." The unitary Cl(-) transport rate, measured in reconstituted liposomes by both a conventional initial-velocity method and a novel Poisson dilution approach, is approximately 4,000 s(-1) for wild-type protein, and the uncoupled mutants transport Cl(-) at similar rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号