共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Arabidopsis thaliana late embryogenesis abundant gene AtEm6 is required for normal seed development and for buffering the rate of dehydration during the latter stages of seed maturation. However, its function in salt stress tolerance is not fully understood. In this investigation, cell suspension cultures of three plant species rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtEm6. Integration of the AtEm6 gene into the genome of rice, cotton, and white pine has been confirmed by polymerase chain reaction, Southern blotting, and northern blotting analyses. Three transgenic cell lines from each of O. sativa, G. hirsutum, and P. strobus were used to analyze salt stress tolerance conferred by the overexpression of the AtEm6 gene. Our results demonstrated that expression of the AtEm6 gene enhanced salt tolerance in transgenic cell lines. A decrease in lipid peroxidation and an increment in antioxidant enzymes ascorbate peroxidase, glutathione reductase and superoxide dismutase activities were observed in the transgenic cell lines, compared to the non- transgenic control. In rice, AtEM6 increased expression of Ca2+-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt. These results suggested that overexpression of the AtEM6 gene in transgenic cell lines improved salt stress tolerance by regulating expression of Ca2+-dependent protein kinase genes. Overexpression of the AtEM6 gene could be an alternative choice for engineering plant abiotic stress tolerance. 相似文献
4.
5.
6.
Jiang SY Bhalla R Ramamoorthy R Luan HF Venkatesh PN Cai M Ramachandran S 《Transgenic research》2012,21(4):785-795
Both drought and high salinity stresses are major abiotic factors that limit the yield of agricultural crops. Transgenic techniques have been regarded as effective ways to improve crops in their tolerance to these abiotic stresses. Functional characterization of genes is the prerequisite to identify candidates for such improvement. Here, we have investigated the biological functions of an Oryza sativa Ribosome-inactivating protein gene 18 (OSRIP18) by ectopically expressing this gene under the control of CaMV 35S promoter in the rice genome. We have generated 11 independent transgenic rice plants and all of them showed significantly increased tolerance to drought and high salinity stresses. Global gene expression changes by Microarray analysis showed that more than 100 probe sets were detected with up-regulated expression abundance while signals from only three probe sets were down-regulated after over-expression of OSRIP18. Most of them were not regulated by drought or high salinity stresses. Our data suggested that the increased tolerance to these abiotic stresses in transgenic plants might be due to up-regulation of some stress-dependent/independent genes and OSRIP18 may be potentially useful in further improving plant tolerance to various abiotic stresses by over-expression. 相似文献
7.
Huang X Zhang Y Jiao B Chen G Huang S Guo F Shen Y Huang Z Zhao B 《Journal of experimental botany》2012,63(15):5463-5473
A novel gene named TaSC was cloned from salt-tolerant wheat. Northern blot showed that the expression of TaSC in salt-tolerant wheat was up-regulated after salt stress. Real-time quantitative PCR analyses showed that TaSC expression was induced by salt and ABA in wheat. Localization analysis showed that TaSC proteins were localized to the plasma membrane in transgenic Arabidopsis thaliana. The overexpression of TaSC in Col-0 and atsc (SALK_072220) Arabidopsis strains resulted in increased salt tolerance of the transgenic plants. TaSC overexpression in Col-0 and atsc signi?cantly up-regulated the expression of AtFRY1, AtSAD1, and AtCDPK2. AtCDPK2 overexpression in atsc rescued the salt-sensitive phenotype of atsc. The TaSC gene may improve plant salt tolerance by acting via the CDPK pathway. 相似文献
8.
9.
10.
Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field 下载免费PDF全文
Michael Gomez Selvaraj Takuma Ishizaki Milton Valencia Satoshi Ogawa Beata Dedicova Takuya Ogata Kyouko Yoshiwara Kyonoshin Maruyama Miyako Kusano Kazuki Saito Fuminori Takahashi Kazuo Shinozaki Kazuo Nakashima Manabu Ishitani 《Plant biotechnology journal》2017,15(11):1465-1477
Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non‐transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress. 相似文献
11.
12.
Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ionic homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ionic homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots. 相似文献
13.
14.
Background
Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking.Methodology/Principal Findings
Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants.Conclusions/Significance
Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions. 相似文献15.
On the basis of microarray analyses of the salt‐tolerant wheat mutant RH8706‐49, a previously unreported salt‐induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)‐like protein], was cloned. Real‐time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non‐transgenic wild‐type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na+ and guard cells took up more Ca2+ ions. Compared with wild‐type plants, TaHPS‐expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought. 相似文献
16.
17.
18.
Expression of the Arabidopsis
AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean 总被引:1,自引:0,他引:1
Jun Sung Seo Hwang Bae Sohn Kaeyoung Noh Choonkyun Jung Ju Hee An Christopher M. Donovan David A. Somers Dae In Kim Soon-Chun Jeong Chang-Gi Kim Hwan Mook Kim Suk-Ha Lee Yang Do Choi Tae Wha Moon Chung Ho Kim Jong-Joo Cheong 《Molecular breeding : new strategies in plant improvement》2012,29(3):601-608
19.
转OsCDPK7基因水稻的培育与耐盐性分析 总被引:2,自引:1,他引:2
以4℃处理的水稻品种辽盐241植株叶片总RNA为模板, 用基因特异引物通过RT-PCR扩增出1 700 bp的OsCDPK7基因。该基因序列比已报道的基因序列(GenBank登录号:AB042550)缺失了26个氨基酸, 而丝氨酸/苏氨酸蛋白激酶活性中心和钙结合结构域完整, 具备钙依赖的蛋白激酶活性。构建了由组成型启动子E12调控的OsCDPK7基因植物表达载体, 利用农杆菌介导法转化水稻, 经Km筛选及Southern杂交验证, 获得10株转基因植株。耐盐性分析表明:OsCDPK7基因的组成型表达提高了T2代转基因植株的耐盐性, 部分转基因水稻在0.2 mol/L NaCl培养基中能够萌发; 幼苗期水稻经0.4 mol/L NaCl浇灌10 d, 去除胁迫后能恢复正常生长; 而对照在以上情况下均不能萌发和恢复。结果表明, 利用植物信号转导过程中的调控因子能够提高转基因作物的耐盐性。然而, 在不同耐性的转基因植株中, OsCDPK7基因的表达有一定的差异。 相似文献
20.
Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene 总被引:1,自引:0,他引:1
Rubén Alcázar Joan Planas Triambak Saxena Xavier Zarza Cristina Bortolotti Juan Cuevas Marta Bitrián Antonio F. Tiburcio Teresa Altabella 《Plant Physiology and Biochemistry》2010,48(7):547-552