首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site fidelity to breeding and wintering grounds, and even stopover sites, suggests that passerines are capable of accurate navigation during their annual migrations. Geolocator‐based studies are beginning to demonstrate precise population‐specific migratory routes and even some interannual consistency in individual routes. Displacement studies of birds have shown that at least adult birds are capable of goal‐oriented movements, likely involving some type of map or geographic position system. In contrast, juveniles on their first migration use a clock‐and‐compass orientation strategy, with limited knowledge about locations along their migratory routes. Positioning information could come from a variety of cues including visual, olfactory, acoustic, and geomagnetic sources. How information from these systems is integrated and used for avian navigation has yet to be fully articulated. In this review, we (1) define geographic positioning and distinguish the types of navigational strategies that birds could use for orientation, (2) describe sensory cues available to birds for geographic positioning, (3) review the evidence for geographic positioning in birds and methods used to collect that evidence, and (4) discuss ways ornithologists, particularly field ornithologists, can contribute to and advance our knowledge of the navigational abilities of birds. Few studies of avian orientation and navigation mechanisms have been conducted in the Western Hemisphere. To fully understand migratory systems in the Western Hemisphere and develop better conservation policies, information about the orientation and navigation mechanisms used by specific species needs to be integrated with other aspects of their migration ecology and biology.  相似文献   

2.
昆虫定向机制研究进展   总被引:1,自引:1,他引:1  
高月波  翟保平 《昆虫知识》2010,47(6):1055-1065
许多昆虫具有定向运动的行为。对部分社会性昆虫和迁飞性昆虫定向行为的大量研究已经初步阐明太阳、地磁场、天体、风及地面标志物等都可能成为昆虫返巢和迁飞定向的线索。社会性昆虫具有对不同定向线索进行整合而实现精确导航的能力。日间迁飞性昆虫利用时间补偿太阳罗盘进行定向的机制亦已明确,但夜间迁飞昆虫的定向机制尚需深入研究。迁飞性害虫定向机制的明确将有助于判断害虫迁飞路径及降落区域,为迁飞害虫的准确预测提供科学依据。本文对昆虫的定向机制研究进展进行了综述。  相似文献   

3.
生物磁学在鸟类定向研究中的进展   总被引:5,自引:0,他引:5  
地球上广泛存在的地磁场能够为导航提供可靠的信息,因此很多鸟类在迁徙和归巢过程中都使用地磁信息来保证航行方向的正确,在迁徙的鸟类中已经发现有18种是利用地磁罗盘进行定向和导航的。本文从鸟类使用的磁罗盘、航行地图以及磁感应机制等几方面阐述了目前在鸟类生物磁学方面的研究进展。  相似文献   

4.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

5.
Numerous marine animals can sense the Earth's magnetic field and use it as a cue in orientation and navigation. Two distinct types of information can potentially be extracted from the Earth's field. Directional or compass information enables animals to maintain a consistent heading in a particular direction such as north or south. In contrast, positional or map information can be used by animals to assess geographic location and, in some cases, to navigate to specific target areas. Marine animals exploit magnetic positional information in at least two different ways. For hatchling loggerhead sea turtles, regional magnetic fields function as open-sea navigational markers, eliciting changes in swimming direction at crucial points in the migratory route. Older sea turtles, as well as spiny lobsters, use magnetic information in a more complex way, exploiting it as a component of a classical navigational map, which permits an assessment of position relative to specific geographic destinations. These “magnetic maps” have not yet been fully characterized. They may be organized in several fundamentally different ways, some of which bear little resemblance to human maps, and they may also be used in conjunction with unconventional navigational strategies. Unraveling the nature of magnetic maps and exploring how they are used represents one of the most exciting frontiers of behavioral and sensory biology.  相似文献   

6.
Despite the wealth of studies on seasonal movements of birds between southern nonbreeding locations and High Arctic breeding locations, the key mechanisms of navigation during these migrations remain elusive. A flight along the shortest possible route between pairs of points on a sphere (‘orthodrome’) requires a bird to be able to assess its current location in relation to its migration goal and to make continuous adjustment of heading to reach that goal. Alternatively, birds may navigate along a vector with a fixed orientation (‘loxodrome’) based on magnetic and/or celestial compass mechanisms. Compass navigation is considered especially challenging for summer migrations in Polar regions, as continuous daylight and complexity in the geomagnetic field may complicate the use of both celestial and magnetic compasses here. We examine the possible use of orientation mechanisms during migratory flights across the Greenland Icecap. Using a novel 2 g solar-powered satellite transmitter, we documented the flight paths travelled by a female red knot Calidris canutus islandica during two northward and two southward migrations. The geometry of the paths suggests that red knots can migrate across the Greenland Icecap along the shortest-, orthodrome-like, path instead of the previously suggested loxodrome path. This particular bird's ability to return to locations visited in a previous year, together with its sudden course changes (which would be appropriate responses to ambient wind fields), suggest a map sense that enables red knots to determine location, so that they can tailor their route depending on local conditions.  相似文献   

7.
Bats respond to polarity of a magnetic field   总被引:1,自引:0,他引:1  
Bats have been shown to use information from the Earth's magnetic field during orientation. However, the mechanism underlying this ability remains unknown. In this study we investigated whether bats possess a polarity- or inclination-based compass that could be used in orientation. We monitored the hanging position of adult Nyctalus plancyi in the laboratory in the presence of an induced magnetic field of twice Earth-strength. When under the influence of a normally aligned induced field the bats showed a significant preference for hanging at the northern end of their roosting basket. When the vertical component of the field was reversed, the bats remained at the northern end of the basket. However, when the horizontal component of the field was reversed, the bats changed their positions and hung at the southern end of the basket. Based on these results, we conclude that N. plancyi, unlike all other non-mammalian vertebrates tested to date, uses a polarity-based compass during orientation in the roost, and that the same compass is also likely to underlie bats' long-distance navigation abilities.  相似文献   

8.
Behavior and electrophysiological studies have demonstrateda sensitivity to characteristics of the Geomagnetic field thatcan be used for navigation, both for direction finding (compass)and position finding (map). The avian magnetic compass receptorappears to be a light-dependent, wavelength-sensitive systemthat functions as a polarity compass (i.e., it distinguishespoleward from equatorward rather than north from south) andis relatively insensitive to changes in magnetic field intensity.The receptor is within the retina and is based on one or morephotopigments, perhaps cryptochromes. A second receptor systemappears to be based on magnetite and might serve to transducelocation information independent of the compass system. Thisreceptor is associated with the ophthalmic branch of the trigeminalnerve and is sensitive to very small (<50 nanotesla) changesin the intensity of the magnetic field. In neither case hasa neuron that responded to changes in the magnetic field beentraced to a structure that can be identified to be a receptor.Almost nothing is known about how magnetic information is processedwithin the brain or how it is combined with other sensory informationand used for navigation. These remain areas of future research.  相似文献   

9.
It is proposed that the avian magnetic compass depends on the angle between the horizontal component B(h) of the geomagnetic field (GMF) and E(r), the radial electric field distribution generated by gamma-oscillations within the optic tectum (TeO). We hypothesize that the orientation of the brain relative to B(h) is perceived as a set of electric field ion cyclotron resonance (ICR) frequencies that are distributed in spatially recognizeable regions within the TeO. For typical GMF intensities, the expected ICR frequencies fall within the 20-50 Hz range of gamma-oscillation frequencies observed during visual stimulation. The model builds on the fact that the superficial lamina of the TeO receive signals from the retina that spatially map the visual field. The ICR frequencies are recruited from the local wide-band gamma-oscillations and are superposed on the tectum for interpretation along with other sensory data. As a first approximation, our analysis is restricted to the medial horizontal plane of the TeO. For the bird to fly in a preferred, previously mapped direction relative to B(h), it hunts for that orientation that positions the frequency maxima at appropriate locations on the TeO. This condition can be maintained even as B(h) varies with geomagnetic latitude during the course of long-distance flights. The magnetovisual coordinate system (straight phi, omega) overlaying the two halves of the tectal surface in a nonsymmetric way may imply an additional orienting function for the TeO over and above that of a simple compass (e.g., homing navigation as distinct from migrational navigation).  相似文献   

10.
The Earth's magnetic field provides a pervasive source of directionalinformation used by phylogenetically diverse marine animals.Behavioral experiments with sea turtles, spiny lobsters, andsea slugs have revealed that all have a magnetic compass sense,despite vast differences in the environment each inhabits andthe spatial scale over which each moves. For two of these animals,the Earth's field also serves as a source of positional information.Hatchling loggerhead sea turtles from Florida responded to themagnetic fields found in three widely separated regions of theAtlantic Ocean by swimming in directions that would, in eachcase, facilitate movement along the migratory route. Thus, foryoung loggerheads, regional magnetic fields function as navigationalmarkers and elicit changes in swimming direction at crucialgeographic boundaries. Older turtles, as well as spiny lobsters,apparently acquire a "magnetic map" that enables them to usemagnetic topography to determine their position relative tospecific goals. Relatively little is known about the neuralmechanisms that underlie magnetic orientation and navigation.A promising model system is the marine mollusc Tritonia diomedea,which possesses both a magnetic compass and a relatively simplenervous system. Six neurons in the brain of T. diomedea havebeen identified that respond to changes in magnetic fields.At least some of these appear to be ciliary motor neurons thatgenerate or modulate the final behavioral output of the orientationcircuitry. These findings represent an encouraging step towarda holistic understanding of the cells and circuitry that underliemagnetic orientation behavior in one model organism.  相似文献   

11.
趋磁细菌(MTB)依赖于体内磁小体结构在磁场中取向,多个磁小体以一定的组 织形式排列是形成菌体内生物磁罗盘的重要环节.多数趋磁细菌中磁小体成链排列,有效增加了细胞磁偶极矩,从而使菌体表现出在环境磁场中定向的能力.趋磁螺菌M. magneticum AMB-1和M. gryphiswaldense MSR-1中磁小体均沿细胞长轴形成一条磁 小体链.通过对相关基因突变体表型的研究,结合对磁小体链形成过程的实时动态观 察,人们已初步了解MamJ、MamK和MamA等基因在磁小体链装配和维护过程中的功能.本文介绍了近年来趋磁螺菌磁小体链装配过程中重要功能性基因的研究进展,并重点分析了AMB-1和MSR-1中磁小体链装配的差异.  相似文献   

12.
For spatial orientation and navigation, many insects derive compass information from the polarization pattern of the blue sky. The desert locust Schistocerca gregaria detects polarized light with a specialized dorsal rim area of its compound eye. In the locust brain, polarized-light signals are passed through the anterior optic tract and tubercle to the central complex which most likely serves as an internal sky compass. Here, we suggest that neurons of a second visual pathway, via the accessory medulla and posterior optic tubercle, also provide polarization information to the central complex. Intracellular recordings show that two types of neuron in this posterior pathway are sensitive to polarized light. One cell type connects the dorsal rim area of the medulla with the medulla and accessory medulla, and a second type connects the bilaterally paired posterior optic tubercles. Given the evidence for a role of the accessory medulla as the master clock controlling circadian changes in behavioral activity in flies and cockroaches, our data open the possibility that time-compensated polarized-light signals may reach the central complex via this pathway for time-compensated sky-compass navigation.  相似文献   

13.
More than three decades ago, Thomas Alerstam initiated the study of orientation and navigation of migratory songbirds in southern Sweden. Stensoffa Ecological Field Station, located approx. 20 km east of Lund, has since been a primary location for orientation experiments. However, it has often been difficult to record well‐oriented behaviour in the seasonal appropriate migratory directions, in particular in magnetic orientation experiments under simulated overcast or indoors. Here, we summarise all available experiments testing magnetic compass orientation in migratory songbirds in southern Sweden, and review possible explanations for the poor magnetic compass orientation found in many studies. Most of the factors proposed can be essentially excluded, such as difficulties to extract magnetic compass information at high latitudes, methodological or experimenter biases, holding duration and repeated testing of individual birds, effects of magnetic anomalies and temporal variations of the ambient magnetic field, as well as anthropogenic electromagnetic disturbances. Possibly, the geographic location of southern Sweden where many birds captured and/or tested at coastal sites are confronted with the sea, might explain some of the variation that we see in the orientation behaviour of birds. Still, further investigations are needed to conclusively identify the factors responsible for why birds are not better oriented in the seasonal appropriate migratory direction at Stensoffa.  相似文献   

14.
In addition to other sensory modalities, migratory vertebrates are able to use the earths’ magnetic field for orientation and navigation. The magnetic cue may also serve as a reference for other orientation mechanisms. In this study, significant evidence is shown that, even in darkness, newts (Notophthalmus viridescens, Salamandridae) spontaneously align according to the natural or to the deviated earth’s magnetic field lines, thereby demonstrating a magnetic compass sensitivity. All newts preferred compass directions close to east or west or chose the E/W axially and hence sought to maintain a specific angle or axis relative to the magnetic field vector. Such an active alignment is considered an essential precondition for magnetic orientation. When the horizontal magnetic vector was experimentally compensated, animals became disoriented. We infer that the animals have either learned the preferred magnetic direction/axis individually or that these choices are innate and could even be seasonally different as in migrating birds. It is still an unanswered question as to how and where the physical and physiological mechanisms of magnetic transduction and reception take place. The visual system and other light-dependent (radical pairs) mechanisms alone are often claimed to be in function, but this must now be reconsidered given the results from animals when deprived of light. The results may therefore point to putative receptor mechanisms involving magnetite elements in specialized magneto-receptors.  相似文献   

15.
The orientation system of migratory birds consists of a magnetic compass and compasses based upon celestial cues. In many places, magnetic compass directions and true or geographic compass directions differ (referred to as magnetic declination). It has been demonstrated experimentally in several species that the innate preferred direction of magnetic orientation can be calibrated by celestial rotation, an indicator of geographic directions. This calibration process brings the two types of compass into conformity and provides the birds with a mechanism that compensates for the spatial variation in magnetic declination. Calibration of magnetic orientation has heretofore been demonstrated only with hand-raised birds exposed to very large declination (90° or more). Here we show that the magnetic orientation of wild birds from near Albany, New York, USA (declination = 14° W) was N–S, a clockwise shift of 26° from the NNW–SSE direction of birds raised entirely indoors. Hand-raised birds having visual experience with either the daytime sky or both day and night sky orientated N–S, similar to wild-caught birds. These data provide the first confirmation that calibration of magnetic orientation occurs under natural conditions and in response to modest declination values.  相似文献   

16.
Domestic chicks are able to find a food goal at different times of day, with the sun as the only consistent visual cue. This suggests that domestic chickens may use the sun as a time-compensated compass, rather than as a beacon. An alternative explanation is that the birds might use the earth's magnetic field. In this study, we investigated the role of the sun compass in a spatial orientation task using a clock-shift procedure. Furthermore, we investigated whether domestic chickens use magnetic compass information when tested under sunny conditions.Ten ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided, wooden octagonal maze. Eight goal boxes with food pots were attached one to each of the arena sides. A barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation, we tested in five daily 5-min trials whether chicks were able to find food in an systematically allocated goal direction. We controlled for the use of olfactory cues and intra-maze cues. No external landmarks were visible. All tests were done under sunny conditions. Circular statistics showed that nine chicks significantly oriented goalwards using the sun as the only consistent visual cue during directional testing. Next, these nine chicks were subjected to a clock-shift procedure to test for the role of sun-compass information. The chicks were housed indoors for 6 days on a light-schedule that was 6 h ahead of the natural light–dark schedule. After clock-shifting, the birds were tested again and all birds except one were disrupted in their goalward orientation. For the second experiment, six birds were re-trained and fitted with a tiny, powerful magnet on the head to disrupt their magnetic sense. The magnets did not affect the chicks’ goalward orientation.In conclusion, although the strongest prediction of the sun-compass hypothesis (significant re-orientation after clock-shifting) was neither confirmed nor refuted, our results suggest that domestic chicks use the sun as a compass rather than as a beacon. These findings suggest that hens housed indoors in large non-cage systems may experience difficulties in orientation if adequate alternative cues are unavailable. Further research should elucidate how hens kept in non-cage systems orient in space in relation to available resources.  相似文献   

17.
Previous studies have shown that migrating palmate newts (Lissotriton helveticus) can rely on acoustic cues for orientation to breeding ponds. Nonetheless, although acoustic cues are reliable over relatively short distances, they are unlikely to account for the long‐distance homing demonstrated in several other species of newts. Most individuals of L. helveticus migrate only a few hundred meters (Diego‐Rasilla, F. J. & Luengo, R. M. 2007: Acoustic orientation in the palmate newt, Lissotriton helveticus. Behav. Ecol. Sociobiol. 61, 1329—1335), raising the possibility that this species may only utilize short‐distance cues (Joly, P. & Miaud, C. 1993: How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris). Ethol. Ecol. Evol. 5, 447—455; Russell, A. P., Bauer, A. M. & Johnson, M. K. 2005: Migration of amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Migration of Organisms (Elewa, M. T., ed). Springer‐Verlag, Berlin Heidelberg, pp. 151—203; Sinsch, U. 2006: Orientation and navigation in Amphibia. Mar. Freshw. Behav. Phy. 39, 65—71). Therefore, experiments were carried out to investigate the use of the geomagnetic field in the nocturnal homing orientation of L. helveticus. Tests were carried out at night in an outdoor circular arena, under total overcast sky that prevented access to celestial compass cues. Individual newts were tested in one of four symmetrical alignments of an earth‐strength magnetic field. We studied the orientation behaviour of newts from two breeding ponds located 9.05 km west‐southwest and 19 km east‐northeast of the testing site. The distribution of magnetic bearings from both groups of newts exhibited significant orientation in the homeward direction. These findings indicate that palmate newts are capable of long‐distance homing and are able to orient in the homeward direction at night using the magnetic compass as the sole source of directional (i.e., compass) information.  相似文献   

18.
If released in water or on sand the supratidal amphipod Talorchestia longicornis Say amphipods moves in the onshore direction. The present study was designed to determine whether this species uses the sun as a cue for orientation and if so, which visual pigment in the compound eyes is involved. When tested in an apparatus with a view of only the sun and sky amphipods were disoriented when the sun was obscured by clouds. However, when the sun was visible, they oriented in the onshore direction of their home beach in both water and air during both the morning and afternoon. Resetting the time of their circadian rhythm in activity with either an altered light:dark or diel temperature cycle also reset the chronometric mechanism associated with sun compass. orientation. T. longicornis has two visual pigments with absorption maxima near 420 nm and 520 nm. Only the 420 nm pigment is used for sun compass orientation, which may be an adaptation for increasing the contrast between the sun and background scattered skylight or for detecting the radiance distribution of skylight. Irradiating the 520 nm absorbing pigment alone induced positive phototaxis to the sun but not onshore orientation. Thus, T. longicornis shows wavelength specific behavior by using only one of its visual pigments for sun compass orientation.  相似文献   

19.
The magnetic compass sense of animals is currently thought to be based on light-dependent processes like the proposed radical pair mechanism. In accordance, many animals show orientation responses that depend on light. However, the orientation responses depend on the wavelength and irradiance of monochromatic light in rather complex ways that cannot be explained directly by the radical pair mechanism. Here, a radically different model is presented that can explain a vast majority of the complex observed light-dependent responses. The model put forward an integration process consisting of simple lateral inhibition between a normal functioning, light-independent magnetic compass (e.g. magnetite based) and a vision based skylight color gradient compass that misperceives compass cues in monochromatic light. Integration of the misperceived color compass cue and the normal magnetic compass not only explains most of the categorically different light-dependent orientation responses, but also shows a surprisingly good fit to how well the animals are oriented (r-values) under light of different wavelength and irradiance. The model parsimoniously suggests the existence of a single magnetic sense in birds (probably based on magnetic crystals).  相似文献   

20.
The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号