首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Dispersal, gene flow, and population structure   总被引:35,自引:0,他引:35  
The accuracy of gene flow estimates is unknown in most natural populations because direct estimates of dispersal are often not possible. These estimates can be highly imprecise or even biased because population genetic structure reflects more than a simple balance between genetic drift and gene flow. Most of the models used to estimate gene flow also assume very simple patterns of movement. As a result, multiple interpretations of population structure involving contemporary gene flow, departures from equilibrium, and other factors are almost always possible. One way to isolate the relative contribution of gene flow to population genetic differentiation is to utilize comparative methods. Population genetic statistics such as FST, heterozygosity and Nei's D can be compared between species with differing dispersal abilities if these species are otherwise phylogenetically, geographically and demographically comparable. Accordingly, the available literature was searched for all groups that meet these criteria to determine whether broad conclusions regarding the relationships between dispersal, population genetic structure, and gene flow estimates are possible. Allozyme and mtDNA data were summarized for 27 animal groups in which dispersal differences can be characterized. In total, genetic data were obtained for 333 species of vertebrates and invertebrates from terrestrial, freshwater and marine habitats. Across these groups, dispersal ability was consistently related to population structure, with a mean rank correlation of -0.72 between ranked dispersal ability and FST. Gene flow estimates derived from private alleles were also correlated with dispersal ability, but were less widely available. Direct-count heterozygosity and average values of Nei's D showed moderate degrees of correlation with dispersal ability. Thus, despite regional, taxonomic and methodological differences among the groups of species surveyed, available data demonstrate that dispersal makes a measurable contribution to population genetic differentiation in the majority of animal species in nature, and that gene flow estimates are rarely so overwhelmed by population history, departures from equilibrium, or other microevolutionary forces as to be uninformative.  相似文献   

2.
In recent years multilocus data sets have been used to study the demographic history of human populations. In this paper (1) analyses previously done on 60 short tandem repeat (STR) loci are repeated on 30 restriction site polymorphism (RSP) markers; (2) relative population weights are estimated from the RSP data set and compared to previously published estimates from STR and craniometric data sets; and (3) computer simulations are performed to show the effects of ascertainment bias on relative population weight estimates. Not surprisingly, given that the RSP markers were originally identified in a small panel of Caucasians, estimates of relative population weights are biased and the European population weight is artificially inflated. However, the effects of ascertainment bias are not apparent in a principal components plot or estimates of FST. Ascertainment bias can have a large effect in other genetic systems with inherently low heterozygosity such as Alus or single nucleotide polymorphisms (SNPs), and care must be taken to have prior knowledge of how polymorphic markers in a given data set were originally identified. Otherwise, results can be skewed and interpretations faulty.  相似文献   

3.
The concept of effective population size (N(e) ) is based on an elegantly simple idea which, however, rapidly becomes very complex when applied to most real-world situations. In natural populations, spatial and temporal stratifications create different classes of individuals with different vital rates, and this in turn affects (generally reduces) N(e) in complex ways. I consider how these natural stratifications influence our understanding of effective size and how to estimate it, and what the consequences are for conservation and management of natural populations. Important points that emerge include the following: 1 The relative influences of local vs metapopulation N(e) depend on a variety of factors, including the time frame of interest. 2 Levels of diversity in local populations are strongly influenced by even low levels of migration, so these measures are not reliable indicators of local N(e) . 3 For long-term effective size, obtaining a reliable estimate of mutation rate is the most important consideration; unless this is accomplished, estimates can be biased by orders of magnitude. 4 At least some estimators of contemporary N(e) appear to be robust to relatively high (approximately 10%) equilibrium levels of migration, so under many realistic scenarios they might yield reliable estimates of local N(e) . 5 Age structure probably has little effect on long-term estimators of N(e) but can strongly influence contemporary estimates. 6 More research is needed in several key areas: (i) to disentangle effects of selection and drift in metapopulations connected by intermediate levels of migration; (ii) to elucidate the relationship between N(b) (effective number of breeders per year) and N(e) per generation in age-structured populations; (iii) to perform rigorous sensitivity analyses of new likelihood and coalescent-based methods for estimating demographic and evolutionary histories.  相似文献   

4.
Habitat and geographical features of river systems strongly influence gene flow and spatial genetic patterning in riparian plant populations. We investigated the patterns of genetic diversity within and among populations of Ainsliaea faurieana relative to different spatial conditions (along a river, among rivers, and among regions on an island), based on nuclear and chloroplast microsatellite DNA variations. Within an individual river system, we found higher haplotype diversities in downstream populations, and in a Bayesian analysis of recent migration, we detected unidirectional gene movements from upstream to downstream, indicating water-mediated dispersal along the river. Mantel tests detected no isolation-by-distance in genetic variation, suggesting the maintenance of a metapopulation with wide-range seed dispersal by water. Moreover, the observed high level of genetic differentiation, especially in the cpDNA (F(ST) = 0.539), indicated a metapopulation structure with frequent extinction and colonization. On a larger scale, we found high population differentiation and clear genetic structuring among regions, suggesting that gene flow was restricted by geographical features (mountains separating river systems) for relatively long periods. Our findings of genetic structures based on different spatial conditions elucidated patterns and ranges of historical and contemporary gene movement in a plant species that is persistent in extremely disturbed riparian environments.  相似文献   

5.
We compare the performance of Nm estimates based on FST and RST obtained from microsatellite data using simulations of the stepwise mutation model with range constraints in allele size classes. The results of the simulations suggest that the use of microsatellite loci can lead to serious overestimations of Nm, particularly when population sizes are large (N > 5000) and range constraints are high (K < 20). The simulations also indicate that, when population sizes are small (N /= 50) and many loci (nl >/= 20), RST performs better than FST for most of the parameter space. However, FST-based estimates are always better than RST when sample sizes are moderate or small (ns 相似文献   

6.
Allele frequency data from nuclear microsatellite loci were used to investigate patterns of nuclear gene flow and population structure in the morphologically variable Dominican anole (Anolis oculatus). All six loci used proved to be highly polymorphic, with an average of 18.8 alleles per locus. Test for Hardy-Weinberg equilibrium revealed small numbers of heterozygote deficiencies at single loci in single populations and consistent patterns of increasingly significant heterozygote deficiency in global tests across populations and loci. No significant relationship between FST and patristic distances estimated from mitochondrial DNA sequences was detected and estimates of FIS were significantly higher in females than in males, indicating that gene flow may be sex-biased and mediated mainly by male migration. A highly significant correlation between linearized FST and loge (geographical distance) indicates that geographical proximity is a significant factor in the genetic structure of A. oculatus populations. However, levels of gene flow between morphologically differentiated parapatric populations are frequently seen to be relatively high. This supports the hypothesis of natural selection being the driving force behind the development and maintenance of morphological variation and shows that adaptive differentiation may be maintained despite the homogenizing influence of gene flow. Generally, the morphologically variable populations of A. oculatus are seen to be poor candidates for in situ speciation, but an exceptional case on the west coast of Dominica indicates that isolation resulting from vicariant events may lead to rapid differentiation at both mitochondrial and nuclear loci. This provides a possible mechanism for anole speciation on other Caribbean islands.  相似文献   

7.
Newly established or perturbed populations are often the focus of conservation concerns but they pose special challenges for population genetics because drift?migration equilibrium is unlikely. To advance our understanding of the evolution of such populations, we investigated structure and gene flow among populations of chinook salmon that formed via natural straying following introduction to New Zealand in the early 1900s. We examined 11 microsatellite loci from samples collected in several sites and years to address two questions: (i) what population differentiation has arisen in the ≈ 30 generations since salmon were introduced to New Zealand, relative to temporal variation within populations; and (ii) what are the approximate effective population sizes and amounts of gene flow in these populations? These questions are routinely addressed in studies of indigenous populations, but less often in the case of new populations and rarely with consideration of equilibrium assumptions. We show that despite the recent introduction, continued gene flow and high temporal variability among samples, detectable population structure has arisen among the New Zealand populations, consistent with their colonization pattern and isolation by geographical distance. Furthermore, we use simple individual‐based simulations and estimates of effective population sizes to estimate the effective gene flow among drainages under likely nonequilibrium conditions. Similar methodology may be broadly applicable to other studies of population structure and phenotypic evolution under similar nonequilibrium, high gene flow conditions.  相似文献   

8.
Ritland K 《Molecular ecology》2000,9(9):1195-1204
This paper presents a perspective of how inferred relatedness, based on genetic marker data such as microsatellites or amplified fragment length polymorphisms (AFLPs), can be used to demonstrate quantitative genetic variation in natural populations. Variation at two levels is considered: among pairs of individuals within populations, and among pairs of subpopulations within a population. In the former, inferred pairwise relatedness, combined with trait measures, allow estimates of heritability 'in the wild'. In the latter, estimates of QST are obtained, in the absence of known heritabilities, via estimates of pairwise FST. Estimators of relatedness based on the 'Kronecker operator' are given. Both methods require actual variation of relationship, a rarely studied aspect of population structure, and not necessarily present. Some conditions for appropriate population structures in the wild are identified, in part through a review of recent studies.  相似文献   

9.
The similarity index and DNA fingerprinting   总被引:147,自引:0,他引:147  
DNA-fingerprint similarity is being used increasingly to make inferences about levels of genetic variation within and between natural populations. It is shown that the similarity index--the average fraction of shared restriction fragments--provides upwardly biased estimates of population homozygosity but nearly unbiased estimates of the average identity-in-state for random pairs of individuals. A method is suggested for partitioning the DNA-fingerprint dissimilarity into within- and between-population components. Some simple expressions are given for the sampling variances of these estimators.  相似文献   

10.
Understanding the impact of barriers and habitat fragmentation on the ecology and genetics of species is of broad interest to many biologists. In aquatic systems, hydroelectric dams often present an impenetrable barrier to migratory fish and can have negative effects on their persistence. Hydroelectric dams constructed in the Coquitlam and Alouette Rivers in the Fraser River drainage (British Columbia, Canada) in the early 1900s were thought to have led to complete loss of anadromous sockeye salmon from both rivers. For both reservoirs, recent water release programs resulted in the unexpected downstream migration of juvenile sockeye salmon and the subsequent upstream migration of adults towards the reservoir 2 years later. Here we investigate the evolutionary impact of dams on the sockeye salmon migration behavior by investigating the genetic distinction between migratory and non-migratory individuals within the Alouette and Coquitlam reservoirs. We also compare historical and contemporary genetic connectivity among 11 Lower Fraser River sockeye sites to infer recent population connectivity changes that might have been influenced by anthropogenic activities. Our molecular genetic analyses show a genetic distinction between the sea-run and resident individuals from the Coquitlam reservoir and population splitting time estimates suggest a very recent divergence between them. These results indicate a genetic component to migration behavior. For our broader survey from 11 sites, our comparisons suggest a general decline in gene flow, with a few interesting exceptions. In summary, our results suggest (i) early stage divergence between life history forms of sockeye salmon within one reservoir, and (ii) recent changes in genetic connectivity among Lower Fraser River populations; both of these results have potential recovery implications for historically migratory populations that were affected by anthropogenic barriers such as hydroelectric dams.  相似文献   

11.
Methods to evaluate populations for alleles to improve an elite hybrid   总被引:1,自引:0,他引:1  
Elite hybrids can be improved by the introgression of favorable alleles not already present in the hybrid. Our first objective was to evaluate several estimators derived from quantitative genetic theory that attempt to quantify the relative number of useful alleles in potential donor populations. Secondly, we wanted to evaluate two proposed ways of determining relatedness of donor populations to the parents of the elite hybrid. Two experiments, each consisting of 21 maize populations of known pedigree, were grown at three and four environments in Minnesota in 1991. Yield and plant height means were used to provide estimates of each of the following statistics: (1) LPLU, a minimally biased statistic, (2) UBND, the minimum estimate of an upper bound, (3) NI, the net improvement, (4) PTC, the predicted three-way cross, and (5) TCSC, the testcross of the populations. These statistics are biased estimators of the relative number of unique favorable alleles contained within a population compared to a reference elite hybrid. Based on rank correlations, all statistics except NI ranked populations similarly. The percent novel germplasm relative to the single cross to be improved was positively correlated with the estimates of favorable alleles except when NI was used as the estimator. The relationship estimators agreed with the genetic constitution of the donor populations. Strong positive correlations existed between diversity, based on the relationship rankings, and all the estimator rankings, except NI. Potential donor populations were effectively identified by LPLU, UBND, PTC, and TCSC. NI was not a good estimator of unique favorable alleles.  相似文献   

12.
Barker JS 《Molecular ecology》2011,20(21):4452-4471
Allozyme and microsatellite data from numerous populations of Drosophila buzzatii have been used (i) to determine to what degree N(e) varies among generations within populations, and among populations, and (ii) to evaluate the congruence of four temporal and five single-sample estimators of N(e) . Effective size of different populations varied over two orders of magnitude, most populations are not temporally stable in genetic composition, and N(e) showed large variation over generations in some populations. Short-term N(e) estimates from the temporal methods were highly correlated, but the smallest estimates were the most precise for all four methods, and the most consistent across methods. Except for one population, N(e) estimates were lower when assuming gene flow than when assuming populations that were closed. However, attempts to jointly estimate N(e) and immigration rate were of little value because the source of migrants was unknown. Correlations among the estimates from the single-sample methods generally were not significant although, as for the temporal methods, estimates were most consistent when they were small. These single-sample estimates of current N(e) are generally smaller than the short-term temporal estimates. Nevertheless, population genetic variation is not being depleted, presumably because of past or ongoing migration. A clearer picture of current and short-term effective population sizes will only follow with better knowledge of migration rates between populations. Different methods are not necessarily estimating the same N(e) , they are subject to different bias, and the biology, demography and history of the population(s) may affect different estimators differently.  相似文献   

13.
The estimation of population differentiation with microsatellite markers   总被引:54,自引:0,他引:54  
Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.  相似文献   

14.
1. River systems offer special environments for the dispersal of aquatic plants because of the unidirectional (downstream) flow and linear arrangement of suitable habitats.
2. To examine the effect of this flow on microevolutionary processes in the unbranched bur-reed ( Sparganium emersum ) we studied the genetic variation within and among nine (sub)populations along a 103 km stretch of the Niers River (Germany–The Netherlands), using amplified fragment length polymorphisms.
3. Genetic diversity in S. emersum populations increased significantly downstream, suggesting an effect of flow on the pattern of intrapopulation genetic diversity.
4. Gene flow in the Niers River is asymmetrically bidirectional, with gene flow being approximately 3.5 times higher in a downstream direction. The observed asymmetry is probably caused by frequent hydrochoric dispersal towards downstream locations on the one hand, and sporadic zoochoric dispersal in an upstream direction on the other. The spread of vegetative propagules (leaf and stem fragments) is probably not an important mode of dispersal for S. emersum , suggesting that gene flow is mainly via seed dispersal. Realized dispersal distances exceeded 60 km, revealing a potential for long-distance dispersal in S. emersum .
5. There was no correlation between geographical and genetic distances among the nine S. emersum populations (i.e. no isolation by distance), which may be due to the occurrence of long-distance dispersal and/or colonization and extinction dynamics in the Niers River.
6. Overall, the genetic population structure and regional dispersal patterns of S. emersum in the Niers River are best explained by a linear metapopulation model. Our study shows that flow can exert a strong influence on population genetic processes of plants inhabiting stream systems.  相似文献   

15.
The neutral island model forms the basis for several estimation models that relate patterns of genetic structure to microevolutionary processes. Estimates of gene flow are often based on this model and may be biased when the model's assumptions are violated. An appropriate test for violations is to compare FST scores for individual loci to a null distribution based on the average FST taken over multiple loci. A parametric bootstrap method is described here based on Wright's beta-distribution to generate null distributions of FST for each locus. These null distributions account for error introduced by sampling populations, individuals and loci, and also biological sources of error, including variable alleles/locus and inbreeding. Confidence limits can be obtained directly from these distributions. Significant deviations from the island model may be the result of selection, deviations from the island model's migration pattern, nonequilibrium conditions, or other deviations from island-model assumptions. Only strong biases are likely to be detected because of the inherently large sampling variation of FST. Nevertheless, a coefficient, Nb, describing bias in the spread of the beta-distribution in units comparable to the gene flow parameter, Nm, can be obtained for each locus. In samples from populations of the butterfly Coenonympha tullia, the loci Idh-1, Mdh-1, Pgi and Pgm showed significantly lower FST than expected.  相似文献   

16.
Identifying adaptive genetic divergence among populations from genome scans   总被引:26,自引:0,他引:26  
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.  相似文献   

17.
Molecular marker data provide a means of circumventing the problem of not knowing the population structure of a natural population, as observed similarities between a pair's genotypes provide information on their genetic relationship. Numerous method-of-moment (MOM) estimators have been developed for estimating relationship coefficients using this information. Here, I present a simplified form of Wang's 2002 relationship estimator that is not dependent upon a previously required weighting scheme, thus improving the efficiency of the estimator when used with genuinely related pairs. The new estimator is compared against other estimators under a range of conditions, including situations where the parameter estimates are truncated to lie within the legitimate parameter space. The advantages of the new estimator are most notable for the two-gene coefficient of relatedness. Truncating the MOM estimators results in parameter estimates whose properties are similar to maximum likelihood estimates, with them having generally lower sampling variances, but being biased.  相似文献   

18.
19.
Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sockeye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.  相似文献   

20.
Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号