首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the sexual interspecific cross, Nicotiana rustica L.xN. tabacum L., N. rustica can serve as the female but not as the male parent. By fusion of protoplasts, the barrier to fertilization was overcome and somatic hybrids containing N. tabacum cytoplasm were produced as shown by isoelectric focusing of the Fraction-1 protein (F-1-protein). All somatic hybrids displayed polypeptides of the large subunit of F-1 protein (which is coded by the chloroplast genome) characteristic of only one or the other parental species. Two hybrids had large subunits of the N. tabacum type and two hybrids had those of the N. rustica type. Three hybrids contained three smallsubunit polypeptides (coded by the nuclear genome), one being characteristic of N. rustica, one characteristic of N. tabacum, and one with an isoelectric point common to both species. A fourth hybrid contained only two small-subunit polypeptides of the N. tabacum type but in a F-1 protein macromolecule whose large subunits were of the N. rustica type. One somatic hybrid was self-fertile and its F2 progeny contained large- and small-subunit polypeptides indistinguishable in their isoelectric points from those in the parent F1 hybrid. All somatic hybrids showed an aneuploid chromosome number and morphological characteristics intermediate between those of N. rustica and N. tabacum.  相似文献   

2.
Evidence that nuclear genes code for several chloroplast ribosomal proteins   总被引:7,自引:0,他引:7  
Electrophoresis of the proteins of the 50S chloroplast ribosome subunit reveals that there are at least two detectable differencesbetween Nicotiana tabacum and N. glauca. Nuclear genes contain the information for these two polypeptides since they are transmitted to F1 interspecific hybrids independently of the maternal parent.  相似文献   

3.
Summary The nuclei and cytoplasm ofN. gossei andN. tabacum are compatible to the extent that reciprocal, interspecific F1 hybrids can be produced by conventional breeding techniques. Conditions were established in which manyN. gossei isolated chloroplasts could be seen by phase and fluorescence microscopy to adhere to 40% of the population of protoplasts obtained from white tissue of variegatedN. tabacum plants and to remain attached after washing the protoplasts. Chloroplasts also could be seen to enter the interior of the protoplasts. After treating albino protoplasts withN. gossei chloroplasts, the protoplasts were subjected to further conditions whereby 65 calluses containing shoots developed. TwentyN. tabacum protoplasts not treated with foreign chloroplasts also produced calluses with shoots to serve as a control. All calluses developed chlorophyll irrespective of whether or not the albino protoplasts had been treated with isolatedN. gossei chloroplasts. The Fraction 1 protein ofN. tabacum has a different electrophoretic mobility from the protein ofN. gossei or anN. gossei xN. tabacum F1 hybrid. The Fraction 1 protein large subunit is coded by chloroplast DNA, whereas the small subunit is coded by nuclear DNA. Fraction 1 protein was isolated from the variegated shoots of the 65 calluses obtained after treating albino protoplasts with foreign chloroplasts. Immunoelectrophoresis demonstrated the protein from each callus to have a mobility identical toN. tabacum protein. Therefore, under circumstances highly favorable for the direct transfer ofN. gossei isolated chloroplasts (and possibly nuclei also) intoN. tabacum protoplasts, no evidence was obtained to suggest that genetic information contained in the isolated foreign organelles was being translated into the polypeptides of either the large or small subunits of Fraction 1 protein contained in newly differentiated leaves derived from the protoplasts. Supported by Research Grant PCM-75-07368 from the National Science Foundation.  相似文献   

4.
Fraction I protein crystals were obtained by a simple methodfrom four additional species in addition to seven species ofNicotiana previously reported and from Solanum melongena. Crystalswere obtained neither from several other genera of the Solanacealnor from N. debneyi, but 14C protein from the latter co-crystallizedwith N. tabacum Fraction I protein. Co-crystallization did notoccur with 14C proteins from species of Tagetes, Allium, Beta,Brassica and Hyocyamus whose Fraction I proteins were evidentlytoo different in their quaternary structures to occupy the samecrystal lattice with N. tabacum protein. Fraction I proteinsfrom N. gossei and N. excelsior differed in solubility as afunction of the NaCl concentration. The two proteins were alikein the isoelectric point of the three primary peptides composingthe large subunit, but differed in the isoelectric point ofone out of four primary peptides of the small subunit; thisdifference was also consistent with a difference in trypticpeptide fingerprints. Proteins from N. tabacum and N. glaucadiffered both in the composition of their large and small subunitsbut did not differ in solubility. However, by changing the compositionof the small subunit without changing the large subunit, thesolubility of each protein was changed. The change in smallsubunit composition could be achieved by isolating proteinsfrom the reciprocal F1 hybrids of N. tabacum ? N. glauca wherethe maternal inheritance regulates the composition of the largesubunit, whereas both maternal and paternal genes regulate thecomposition of the small subunit. 1Present address: Department of Physiology, Hyogo College ofMedicine, Nishinomiya, Hyogo, Japan. (Received March 20, 1974; )  相似文献   

5.
Intergenomic F1 hybrids between L. auratum x L. henryi and their BC1 progeny were investigated through genomic in situ hybridization technique (GISH) to determine their potential value in lily breeding. We confirmed that F1 intergenomic hybrids possessed a set of chromosomes (x=12) from both parents and that flowers of the F1 auratum × henryi hybrid showed an intermediate morphological phenotype. Pollen size, viability and germination ability were measured through microscopic observations. F1 intergenomic hybrids produced a relevant frequency of 2n-gametes, which were successfully used to perform crosses with Oriental hybrids, resulting in the triploid Oriental Auratum Henryi (OAuH) hybrid. Twenty BC1 plants were generated by crossing between four different Oriental hybrid cultivars and F1 AuH hybrids using an in vitro embryo rescue technique, after which the genome constitution and chromosome composition were analyzed by GISH. All plants were triploid, showing 12 from female parents (diploid Oriental hybrid) and 24 from male parents (diploid F1 AuH hybrid). Overall, 16 out of 20 BC1 progeny possessed recombinant chromosomes with 1-5 crossover sites per plant. Cytological analysis of 20 BC1 plants by GISH verified that the occurrence of 2n pollen formation in all F1 AuH hybrids was derived from the FDR (first division restitution) mechanism, in which the genome composition of all BC1 plants possess 12 Oriental + 12 L. auratum + 12 L. henryi chromosomes. Allotriploids derived from the AuH hybrid were used as female for crossing with the diploid Oriental hybrid cultivar ''Sorbonne'' and considerable numbers of plants (0-6.5 plants per ovary) were only obtained when female OAuH (BC1) triploids were used. Taken together, the results of this study indicate that production and analysis of F1 AuH hybrids and their progeny through sexual polyploidization can be useful for efficient creation of important horticultural traits.  相似文献   

6.
Erianthus arundinaceus is a valuable source of agronomic traits for sugarcane improvement such as ratoonability, biomass, vigor, tolerance to drought and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane, five intergeneric F1 hybrids between S. officinarum and E. arundinaceus and 13 of their BC1 progeny were studied using the genomic in situ hybridization (GISH) technique. In doing so, we assessed the chromosome composition and chromosome transmission in these plants. All F1 hybrids were aneuploidy, containing either 28 or 29 E. arundinaceus chromosomes. The number of E. arundinaceus chromosomes in nine of the BC1 progeny was less than or equal to 29. Unexpectedly, the number of E. arundinaceus chromosomes in the other four BC1 progeny was above 29, which was more than in their F1 female parents. This is the first cytogenetic evidence for an unexpected inheritance pattern of E. arundinaceus chromosomes in sugarcane. We pointed to several mechanisms that may be involved in generating more than 2n gametes in the BC1 progeny. Furthermore, the implication of these results for sugarcane breeding programs was discussed.  相似文献   

7.
Genomic in situ hybridization (GISH) was used for a chromosomal composition study of the later generations of interspecific hybrids between A. cepa L. and A. fistulosum L., which are relatively resistant to downy mildew (peronosporosis). GISH revealed that F2 hybrids, which did not produce seeds, were triploids (2n = 3x = 24) with 24 chromosomes and possessed in their complements 16 chromosomes of A. fistulosum L. and eight chromosomes of A. cepa L. or eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L. The advanced F5 hybrid, which produced few seeds, was amphidiploid with 32 chromosomes. BC1F5 hybrid was triploid with eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L., which did not produce seeds. BC2 (BC1F5) plant was amphidiploid that possessed 4 recombinant chromosomes and produced few seeds. GISH results point to 2n-gametes formation in macro- and microsporogenesis of the hybrids. The mechanism of 2n-gametes formation and the possibility of apomixes events in the backcrossing progeny are discussed.  相似文献   

8.
Summary The substitution patterns of rye chromosomes in hexaploid triticale × wheat F2 hybrids, along with the transmission patterns of rye chromosomes through egg cells and pollen when several of the F1 hybrids were test crossed to triticale and wheat were investigated. The data indicated that the rye chromosome transmission through both the egg and pollen was random in number and in composition. The test crosses suggested that it was best to use wheat pollen for the transmission of rye chromosomes through the egg cells of the F1 hybrids and triticale egg cells for the transmission of rye chromosomes through F1 hybrid pollen. A deviation from random segregation in the F2 and the transmission rate was observed for rye chromosomes 1R, 4R/7R, and 6R. The transmission rates of 1R and 6R varied depending on the direction in which the cross was made. The results also indicated that there was little or no compensation between the R- and D-genomes and that the chromosomes of these two genomes appeared to be transmitted independently of each other.  相似文献   

9.
Gupta SB  Gupta P 《Genetics》1973,73(4):605-612
The F1 hybrids of Nicotiana suaveolens (subgenus Petunioides, 2n = 32) and N. glutinosa (subgenus Tabacum, 2n = 24), were examined during their development, from seedlings to mature plants. It was observed that in the hybrids, there was a progressive change of dominant N. glutinosa morphological characteristics towards those of N. suaveolens, in leaf shape, stem, flower color and branching pattern. A study of mitotic chromosomes in the root-tips and in very young anthers of the mature plants indicated a significantly high average frequency of aberrant mitotic anaphases (bridges and fragments, 12% and 11% respectively). As a consequence of this phenomenon, variability in the number and size of chromosomes was observed in the PMC's and in mitotic metaphases (29-24 chromosomes). In order to establish whether the N. glutinosa chromosomes were preferentially lost, a karyological study of the parents and their F1 hybrids was carried out and it was established that the F1 hybrids were losing N. glutinosa chromosomes preferentially. A mechanism was suggested for the loss of these chromosomes by means of a chromatid type of breakage-fusion-bridge cycle (b-f-b cycle) and initiation of the b-f-b cycle in the hybrid due to an interaction of the regulatory mechanism of DNA replication in the haploid genomes of the parental species. However, loss of these chromosomes owing to interaction of certain genes from the two parental species cannot be ruled out.  相似文献   

10.
Fraction 1 protein (F-1-protein) (ribulose bisphosphate carboxy-lase-oxygenase) contained inLemnaceae has been evolving for at least 50 million years because fossils of these plants have been identified in strata belonging to the Upper Cretaceous. Electrofocusing F-1-protein resolves the large subunit polypeptides coded by extranuclear DNA and the small subunit polypeptides coded by nuclear DNA. Four differences affecting isoelectric points of the large subunit polypeptides and eight affecting the small subunit polypeptides are now present among eleven species representing the four genera comprising theLemnaceae. In comparison, four differences in the large and 13 in the small subunit polypeptides exist among 63 species ofNicotiana; four differences in the large and eight differences in the small subunit polypeptides exist among 19 species ofGossypium. The number of differences in F-1-protein composition being of the same order of magnitude for the generaNicotiana, Gossypium, and the familyLemnaceae, we infer that these Angiosperms are of similar antiquity. Nicotiana species indigenous to Australia and Africa contain F-1-proteins whose large subunit polypeptides are different but some of whose small subunit polypeptides are like those found in species from the Western Hemisphere. The same situation is found for the F-1-protein inGossypium. These results are in harmony with the view that species ofNicotiana andGossypium have arrived in Australia via former land connections between S. America, Antarctica, and Australia.  相似文献   

11.
Summary Genetically asymmetric hybrids were recovered by fusion of Nicotiana tabacum protoplasts with irradiated protoplasts of kanamycin-resistant, nopalineproducing plants of N. repanda. Hybrid calli were selected by culture on media containing kanamycin and were regenerated. These plants were morphologically similar to N. tabacum but produced nopaline, indicating they retained genes from N. repanda. Esterase isozyme profiles also indicated that the plants are somatic hybrids, but are more similar to N. tabacum than N. repanda. Chromosome counts showed most of the hybrids had 55–62 chromosomes, which is consistent with extensive, although incomplete elimination of N. repanda chromosomes. The hybrids were largely male sterile, but about half of them set seed when crossed with N. tabacum. Chromosome numbers of the progeny and the pattern of inheritance of kanamycin resistance indicated the continued elimination of N. repanda genetic material in these backcrosses. The N. repanda parent used in these fusions gave a hypersensitive response to TMV, whereas the N. tabacum parent was TMV sensitive. When inoculated with TMV, plants from two hybrid clones gave a hypersensitive response. Plants from the other clones became systemically infected with the virus.  相似文献   

12.
Summary The segregation and recombination patterns of mitochondrial genome in the somatic hybrids of Nicotiana tabacum and N. rustica were studied by RFLP analysis using four heterologous mitochondrial DNA probes, namely cytochrome oxidase subunit I (COI), cytochrome oxidase subunit II (COII), 26s rDNA and 5s-18s rDNA. These RFLP patterns were compared with those of the gametosomatic hybrids of these two species. A preponderance of N. rustica type patterns was observed in the somatic hybrids. One of the somatic hybrids had N. rustica type pattern with COI probe, novel pattern with COII, and 26s rDNA probe and N. tabacum type pattern with 5s-18s rDNA probe. These patterns are identical to those of some of the gametosomatic hybrids and could only be due to the recombination of mitochondrial genomes of the two parents. The extent and the nature of recombination of mitochondrial genomes is similar in gametosomatic and somatic hybrids.  相似文献   

13.
This study was conducted to describe the major and the minor rDNA chromosome distribution in the spined loach Cobitis taenia (2n = 48) and the Danubian loach Cobitis elongatoides (2n = 50), and their laboratory-produced diploid reciprocal F1 hybrid progeny. It was tested by fluorescence in situ hybridisation (FISH) whether the number of 28s and 5s rDNA sites in the karyotypes of diploid hybrids corresponds to the expectations resulting from Mendelian ratio and if nucleolar organiser regions (NOR)were inherited from both parents or nucleolar dominance can be observed in the induced F1 hybrid progeny. Ten (females) or twelve (males) 28s rDNA loci were located in nine uniarm chromosomes of C. taenia. Two of such loci terminally bounded on one acrocentric chromosome were unique and indicated as specific for this species. Large 5s rDNA clusters were located on two acrocentric chromosomes. In C. elongatoides of both sexes, six NOR sites in terminal regions on six meta-submetacentric chromosomes and two 5s rDNA sites on large submetacentrics were detected. The F1 hybrid progeny (2n = 49) was characterised by the intermediate karyotype with the sites of ribosome synthesis on chromosomes inherited from both parents without showing nucleolar dominance. 5s rDNA sites were detected on large submetacentric and two acrocentric chromosomes. The observed number of both 28s and 5s rDNAs signals in F1 diploid Cobitis hybrids was disproportionally inherited from the two parental species, showing inconsistency with the Mendelian ratios. The presented rDNA patterns indicate some marker chromosomes that allow the species of the parental male and female to be recognised in hybrid progeny. The 5s rDNA was found to be a particularly effective diagnostic marker of C. elongatoides to partially discern genomic composition of diploid Cobitis hybrids and presumably allopolyploids resulting from their backcrossing with one of the parental species. Thus, the current study provides insight into the extent of rDNA heredity in Cobitis chromosomes and their cytotaxonomic character.  相似文献   

14.
Li LR  Sisson VA  Kung SD 《Plant physiology》1983,71(2):404-408
Genetic variability in the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in several Nicotiana species has been characterized by isoelectric focusing patterns. This heritable variation provides an opportunity to examine the functional role of each of these subunits. In this study, specifically designed RuBPCase enzymes composed of identical large subunits but different small subunits were constructed in vivo by interspecific hybridization between the species N. sylvestris, N. tabacum, N. glauca, N. glutinosa, N. plumbaginifolia, and N. tomentosiformis. Small subunit polypeptides were combined to form a sequence of one, two, three, and four polypeptides with the large subunit of N. sylvestris. Kinetic properties of these hybrid enzymes were compared. No differences in the specific activity of either carboxylation or oxygenation nor in Km values for ribulose 1,5-bisphosphate, CO2, or O2 were detected among the RuBPCase enzymes from the various interspecific hybrids. Likewise, the ratio of carboxylation to oxygenation was constant.  相似文献   

15.
Summary Mesophyll protoplasts of a kanamycin-resistant, nopaline-positive Nicotiana plumbaginifolia seed line were inactivated by -irradiation and electrically fused with unirradiated mesophyll protoplasts of N. tabacum. Hybrids were selected on kanamycin and regenerated. Genetic material from N. plumbaginifolia was detected in these plants by the following criteria: (1) morphology, (2) esterase isozyme profiles, and (3) the presence of nopaline in leaf extracts. All of the plants regenerated were morphologically more similar to N. tabacum than to N. plumbaginifolia, and many were indistinguishable from N. tabacum. It was found that 37 plants displayed one or two esterases characteristic of N. plumbaginifolia in addition to a full set of esterases from N. tabacum. Based on their esterases, we have classified these plants as somatic hybrids. However, irradiation has clearly reduced the amount of N. plumbaginifolia genetic material that they retain; 24 plants were found that had only N. tabacum esterases but that produced nopaline and were kanamycin resistant. Genomic DNA from several of these plants was probed by Southern blotting for the presence of the authentic neomycin phosphotransferase gene (kanamycin-resistance gene) — all were found to contain the gene. These plants were classified as asymmetric hybrids. Finally, 25 plants were regenerated that were kanamycin sensitive, negative for nopaline, and contained only N. tabacum esterases. All of the regenerated plants, including this final category, were male sterile. As transferring the N. plumbaginifolia cytoplasm to an N. tabacum nuclear background results in an alloplasmic form of male sterility, all of the plants regenerated in this study appear to be cybrids irrespective of their nuclear constitution. Chromosome analysis of the asymmetric hybrids showed that most of them contained one more chromosome than is normal for N. tabacum. The somatic hybrids examined all had several additional chromosomes. Although male sterile, the asymmetric hybrids were female fertile to varying degrees and were successfully backcrossed with N. tabacum. Analysis of the resultant F1 progeny indicated that the kanamycin-resistance gene from N. plumbaginifolia is partially unstable during meiosis, as would be expected for factors inherited on an unpaired chromosome.Abbreviations Km r kanamycin resistant - Km s kamacysin sensitive - Nop + nopaline positive - Nop nopaline negative  相似文献   

16.
Summary Somatic hybrids were produced between Nicotiana tabacum and N. nesophila, two species incapable of conventional sexual hybridization. Sexual hybrids, though, could be produced between these two species by using ovule culture only when N. nesophila was female. Clones of somatic hybrids were compared with sexual hybrids. Statistically significant variation was observed between clones, but not between sexual hybrids, for pollen viability, flower morphology, leaf morphology, and trichome density. As all clones of somatic hybrids have 96 chromosomes, the variability could not be explained by interclonal variation in chromosome number. Variation between somatic hybrids could be the result of cytoplasmic segregation or recombination, mitotic recombination or small chromosomal rearrangements prior to plant regeneration. Variation between clones could be exploited as these interspecies hybrids are now being used to incorporate disease resistance into cultivated tobacco.  相似文献   

17.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

18.
Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.  相似文献   

19.
Somatic hybrid plants were produced by fusion of protoplasts from cell cultures of the Nicotiana tabacum L. sulfur mutant Su/Su and from leaf mesophyll of Nicotiana glauca Graham. After fusion the N. glauca protoplasts failed to survive under the selected culture condition. From the hybrid cells light green shoots were produced. The hybrid plants exhibited intermediate characters between parental species with respect to leaf morphology, trichome density, floral structure and flower color. The chromosome number of 25 hybrid plants was 2n = 72 and both N. glauca and N. tabacum chromosomes were identified in the hybrids. Results of isoenzyme analysis showed bands of both parents and a specific (hybrid) band for aspartate amino-transferase. Small subunit fraction-1-protein of somatic hybrids also consisted of the sum of N. glauca and N. tabacum bands. Leaf spot formation associated with the Su locus of N. tabacum was observed in somatic hybrids.  相似文献   

20.
A series of chromosomal variants has been isolated from an open-pollinated progeny of interspecific hybrids between aneuploids of Coix gigantea (2n=18–24) and Coix aquatica (2n=10). The interspecific hybrids (2n=14, 15 and 16) produced several types of gametes not only with different chromosome numbers but also comprised of varied permutations and combinations of gigantea and aquatica chromosomes. This was evident when the open-pollinated progeny obtained from these hybrids was screened chromosomally. Two such open-pollinated experimental progenies were studied in two successive years (1983 and 1984) and plants with from 2n=10 to 2n=21 chromosomes were isolated. Chromosomal configurations at diakinesis in all the variants revealed frequent pairing between the gigantea and aquatica chromosomes. This indicated that the two species are phylogenetically closely related. Restoration of pure parental species from the F1 hybids and chromosomal variants through genomic segregation and spontaneous back-cross are unique and noteworthy features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号