共查询到20条相似文献,搜索用时 15 毫秒
1.
Static and dynamic light scattering experiments on extremely clean (nanofiltered) samples of the well-known amyloidogenic protein beta2-microglobulin (R3Abeta2m and WTbeta2m) evidence the self-assembly of early aggregates showing unexpected features. Further, we find that alphaB-crystallin effectively inhibits aggregation of beta2m in a far less than stoichiometric proportion, from 1:60 alphaB-crystallin monomer to beta2m monomer ratio, down to at least a 1:2 x 10(3) alphaB-crystallin oligomerto beta2m monomer ratio. Therefore, inhibition of the early stage of beta2m aggregation by alphaB-crystallin does not necessarily require a mechanicistic chaperon-like action implying one-to-one binding. This highlights the role of the free energy landscape of the system and of related modifications of solute-solvent thermodynamics caused by co-solutes, in agreement with recent work from our and other laboratories. 相似文献
2.
Conformational change in the C-terminal domain is responsible for the initiation of creatine kinase thermal aggregation 下载免费PDF全文
Protein conformational changes may be associated with particular properties such as its function, transportation, assembly, tendency to aggregate, and potential cytotoxicity. In this research, the conformational change that is responsible for the fast destabilization and aggregation of rabbit muscle creatine kinase (EC 2.7.3.2) induced by heat was studied by intrinsic fluorescence and infrared spectroscopy. A pretransitional change of the tryptophan microenvironments was found from the intrinsic fluorescence spectra. A further analysis of the infrared spectra using quantitative second-derivative and two-dimensional correlation analysis indicated that the changes of the beta-sheet structures in the C-terminal domain and the loops occurred before the formation of intermolecular cross-beta-sheet structures and the unfolding of alpha-helices. These results suggested that the pretransitional conformational changes in the active site and the C-terminal domain might result in the modification of the domain-domain interactions and the formation of an inactive dimeric form that was prone to aggregate. Our results highlighted the fact that some minor conformational changes, which were usually negligible or undetectable by normal methods, might play a crucial role in protein stability and aggregation. Our results also suggested that the changes in domain-domain interactions, but not the dissociation of the dimer, might play a crucial role in the thermal denaturation and aggregation of this dimeric two-domain protein. 相似文献
3.
Apoptosis represents an important cellular defence mechanism against viral pathogens by virtue of its ability to remove infected cells. Consequently, many viruses have developed numerous strategies to prevent or delay host cell apoptosis in order to achieve productive replication. Here we report that deletion of the F1L gene from the vaccinia genome results in increased apoptosis during infection. We demonstrate that F1L, which has no sequence homology to Bcl-2 family members, inhibits apoptosis at the level of mitochondria by binding to Bak. As a consequence, F1L prevents Bak activation, oligomerization and interaction with active Bax, all critical steps in the induction of apoptosis. We demonstrate that residues 64-84 of F1L interact directly with the Bcl-2 homology domain 3 (BH3) domain of Bak. This region of F1L has limited sequence similarity to known Bak-interacting BH3 domains. We also find that such additional BH3-like domains exist in the vaccinia genome. We conclude that F1L uses this specific, BH3-like domain to bind and inhibit Bak at the mitochondria. 相似文献
4.
《The Journal of cell biology》1981,89(3):680-683
Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly. 相似文献
5.
6.
Kittur FS Lalgondar M Yu HY Bevan DR Esen A 《The Journal of biological chemistry》2007,282(10):7299-7311
In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities. 相似文献
7.
The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction 总被引:1,自引:0,他引:1
Human Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers. 相似文献
8.
Atypical microtubular structures of the protozoan parasite Entamoeba histolytica (Eh) have been attributed to amino acid sequence divergence of Eh tubulin. To investigate if this sequence divergence leads to significant differences in the tertiary structure of the Eh alphabeta-tubulin heterodimer, we have modeled alphabeta-tubulin heterodimer of Eh based on the crystal structure of mammalian tubulin. The predicted 3D homology model exhibits an overall resemblance with the known crystal structure of mammalian tubulin except for the 16 residue long carboxy terminal region of Eh beta-tubulin. We propose that this C-terminal region may provide steric hindrance in the polymerization of Eh alphabeta-tubulin for microtubule formation. Using docking studies, we have identified the binding sites for different microtubule specific drugs on Eh beta-tubulin. Our model provides a rational framework, both for understanding the contribution of Eh beta-tubulin C-terminal region to alphabeta-tubulin polymerization and design of new anti-protozoan drugs in order to control amoebiasis. 相似文献
9.
Muchowski PJ Hays LG Yates JR Clark JI 《The Journal of biological chemistry》1999,274(42):30190-30195
Electrospray ionization mass spectrometry (ESI-LC/MS) of tryptic digests of human alphaB-crystallin in the presence and absence of ATP identified four residues located within the core "alpha-crystallin" domain, Lys(82), Lys(103), Arg(116), and Arg(123), that were shielded from the action of trypsin in the presence of ATP. In control experiments, chymotrypsin was used in place of trypsin. The chymotryptic fragments of human alphaB-crystallin produced in the presence and absence of ATP were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven chymotryptic cleavage sites, Trp(60), Phe(61), Phe(75), Phe(84), Phe(113), Phe(118), and Tyr(122), located near or within the core alpha-crystallin domain, were shielded from the action of chymotrypsin in the presence of ATP. Chemically similar analogs of ATP were less protective than ATP against proteolysis by trypsin or chymotrypsin. ATP had no effect on the enzymatic activity of trypsin and the K(m) for trypsin was 0.031 mM in the presence of ATP and 0.029 mM in the absence of ATP. The results demonstrated an ATP-dependent structural modification in the core alpha-crystallin domain conserved in nearly all identified small heat-shock proteins that act as molecular chaperones. 相似文献
10.
A minimal domain responsible for Munc13 activity 总被引:1,自引:0,他引:1
Basu J Shen N Dulubova I Lu J Guan R Guryev O Grishin NV Rosenmund C Rizo J 《Nature structural & molecular biology》2005,12(11):1017-1018
Munc13 proteins are essential in neurotransmitter release, controlling the priming of synaptic vesicles to a release-ready state. The sequences responsible for this priming activity are unknown. Here we identify a large alpha-helical domain of mammalian Munc13-1 that is autonomously folded and is sufficient to rescue the total arrest in neurotransmitter release observed in hippocampal neurons lacking Munc13s. 相似文献
11.
Tubulin from the brine shrimp Artemia readily assembles in vitro in the absence of microtubule-associated proteins under conditions which do not permit assembly of tubulin from brain. Heated microtubule-associated protein preparations from bovine brain do, however, interact with Artemia tubulin, resulting in stimulation of tubulin assembly and formation of morphologically normal cold-sensitive microtubules. Addition of vinblastine to mixtures containing microtubules assembled in the presence of neural microtubule-associated proteins caused a drop and then a rise in turbidity of the solution. The turbidity changes were accompanied by the appearance of coils, presumably derived from the microtubules which disappeared upon addition of vinblastine. Coils also resulted when microtubule-associated proteins and vinblastine were added to tubulin before polymerization was initiated. Vinblastine prevented normal assembly and caused disruption of Artemia microtubules polymerized in the absence of microtubule-associated proteins. Under these conditions clumped or compact coils, different in appearance from those formed in the presence of the microtubule-associated proteins, were observed. The data confirm that tubulin from Artemia, an organism that is phylogenetically far removed from mammals, has retained binding sites for vinblastine and microtubule-associated proteins and that the interrelationship of these sites has been at least partially preserved. The incomplete depolymerization of Artemia microtubules in response to vinblastine when microtubule-associated proteins are absent suggests that the longitudinal tubulin-tubulin interactions involved in microtubule formation are more stable for Artemia than for neural tubulin. 相似文献
12.
Alpha-crystallin, a major structural protein of the lens can also function as a molecular chaperone by binding to unfolding substrate proteins. We have used a combination of limited proteolysis at low temperature, and mass spectrometry to identify the regions of alpha-crystallin directly involved in binding to the structurally compromised substrate, reduced alpha-lactalbumin. In the presence of trypsin, alpha-crystallin which had been pre-incubated with substrate showed markedly reduced proteolysis at the C-terminus compared with a control, indicating that the bound substrate restricted access of trypsin to R157, the main cleavage site. Chymotrypsin was able to cleave at residues in both the N- and C-terminal domains. In the presence of substrate, alpha-crystallin showed markedly reduced proteolysis at four sites in the N-terminal domain when compared with the control. Minor differences in cleavage were observed within the C-terminal domain suggesting that the N-terminal region of alpha-crystallin contains the major substrate interaction sites. 相似文献
13.
The effect of oxidative stress on the Ca2+-ATPase activity, lipid peroxidation and protein modification of cardiac sarcoplasmic reticulum (SR) membranes was investigated. Isolated SR vesicles were exposed to FeSO4/EDTA (0.2 mol Fe2+ per mg of protein) at 37°C for 1 h in the presence or absence of antioxidants. FeSO4/EDTA decreased the maximum velocity of Ca2+-ATPase reaction without a change of affinity for Ca2+ or Hill coefficient. Treatment with radical-generating system led also to conjugated diene formation, loss of sulfhydryl groups, changes in tryptophan and bityrosine fluorescences and to production of lysine conjugates with lipid peroxidation end-products. Lipid antioxidants butylated hydroxytoluene (BHT) and stobadine partially prevented inhibition of Ca2+-ATPase and decrease in tryptophan fluorescence, while the loss of –SH groups and formation of bityrosines or lysine conjugates were completely prevented. Glutathione also partially protected Ca2+-ATPase activity and decreased formation of bityrosine, but it was not able to prevent oxidative modification of tryptophan and lysine. These findings suggest that combination of amino acid modifications, rather than oxidation of amino acids of one kind, is responsible for inhibition of SR Ca2+-ATPase activity. 相似文献
14.
Thyroid hormone metabolism is catalyzed by a small family of selenoenzymes. Type I deiodinase (D1) is the best characterized family member and is an integral membrane protein composed of two 27-kDa subunits that assemble to a functional holoenzyme after translation. To characterize the protein domain(s) responsible for this post-translational assembly event, we used deletion/truncation analysis coupled with immune depletion assays to map the dimerization domain of D1. The results of our studies show that a highly conserved sequence of 16 amino acids in the C-terminal half of the D1 subunit, -D148FL-YI-EAH-DGW163-, serves as the dimerization domain. Based on the high conservation of this domain, we synthesized a novel bait peptide-green fluorescent protein fusion probe (DDD(GFP)) to examine holoenzyme assembly of other family members. Overexpression of either the DDD(GFP) or an inert D1 subunit (M4) into SeD2 (accession number U53505)-expressing C6 cells specifically led to the loss of >90% of the catalytic activity. Catalytically inactive D2 heterodimers composed of SeD2: DDD(GFP) subunits were rescued by specific immune precipitation with anti-SeD2 IgG, suggesting that SeD2 requires two functional subunits to assemble a catalytically active holoenzyme. These findings identify and characterize the essential dimerization domain responsible for post-translational assembly of selenodeiodinases and show that family members can intermingle through this highly conserved protein domain. 相似文献
15.
Girstun A Kowalska-Loth B Czubaty A Klocek M Staroń K 《Biochemical and biophysical research communications》2008,366(1):250-257
The N-terminal domain is a fragment that binds proteins and anchors topoisomerase I in the nucleolus. As a separate polypeptide, it translocates from the nucleolus to nucleoplasm upon camptothecin treatment. In this paper, we show that the translocation depends on the short fragment of the domain (residues from 1 to 67). We also present a list of proteins that specifically bind to the fragment responsible for translocation. 相似文献
16.
Variability-based sequence alignment identifies residues responsible for functional differences in alpha and beta tubulin 总被引:1,自引:0,他引:1
Fygenson DK Needleman DJ Sneppen K 《Protein science : a publication of the Protein Society》2004,13(1):25-31
alpha and beta Tubulin are well-characterized paralogs with similar structures and functions. We quantify the variability of every amino acid position in both tubulins from the aligned sequences of their numerous known orthologs. By aligning the variability profiles, we identify residues that differ significantly in variability between alpha and beta tubulin. Most of these residues are part of well-defined secondary structures and are clustered around the nucleotide binding pocket, the site of greatest functional difference between the two paralogs. The remaining residues of large difference in variability are located in the N-terminal loop between H1 and S2. We therefore predict that certain residues in this unstructured region also contribute to a functional difference between alpha and beta tubulin. Furthermore, we find the most restrictive variability-based alignment is nearly identical to the true structure-based alignment. Thus, by using a stringent variability-based alignment to approximate the true alignment, the method introduced here may predict sites of functional distinction between paralogous proteins even in the absence of structural information. 相似文献
17.
Johansson K Bourhis JM Campanacci V Cambillau C Canard B Longhi S 《The Journal of biological chemistry》2003,278(45):44567-44573
Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding. 相似文献
18.
The effect of small molecules in modulating the chaperone activity of alphaB-crystallin against ordered and disordered protein aggregation 总被引:2,自引:0,他引:2
Protein aggregation can proceed via disordered or ordered mechanisms, with the latter being associated with amyloid fibril formation, which has been linked to a number of debilitating conditions including Alzheimer's, Parkinson's and Creutzfeldt-Jakob diseases. Small heat-shock proteins (sHsps), such as alphaB-crystallin, act as chaperones to prevent protein aggregation and are thought to play a key role in the prevention of protein-misfolding diseases. In this study, we have explored the potential for small molecules such as arginine and guanidine to affect the chaperone activity of alphaB-crystallin against disordered (amorphous) and ordered (amyloid fibril) forms of protein aggregation. The effect of these additives is highly dependent upon the target protein undergoing aggregation. Importantly, our results show that the chaperone action of alphaB-crystallin against aggregation of the disease-related amyloid fibril forming protein alpha-synucleinA53T is enhanced in the presence of arginine and similar positively charged compounds (such as lysine and guanidine). Thus, our results suggest that target protein identity plays a critical role in governing the effect of small molecules on the chaperone action of sHsps. Significantly, small molecules that regulate the activity of sHsps may provide a mechanism to protect cells from the toxic protein aggregation that is associated with some protein-misfolding diseases. 相似文献
19.
Yeang C Varshney S Wang R Zhang Y Ye D Jiang XC 《Biochimica et biophysica acta》2008,1781(10):610-617
Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this study, we systematically mutated these amino acids using site-directed mutagenesis and found that each point mutation abolished SMS activity without altering cellular distribution. We also explored the domains which are responsible for cellular distribution of both enzymes. Given their role as a potential regulator of diseases, these findings, coupled with homology modeling of SMS1 and SMS2, will be useful for drug development targeting SMS. 相似文献